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Abstract—The diversity of software components (e.g., brow-
sers, plugins, fonts) is a wonderful opportunity for users to
customize their platforms. Yet, massive customization creates a
privacy issue: browsers are slightly different from one another,
allowing third parties to collect unique and stable fingerprints to
track users. Although software diversity appears to be the source
of this privacy issue, we claim that this same diversity, combined
with automatic reconfiguration, provides the essential ingredients
to constantly change browsing platforms. Constant change acts
as a moving target defense strategy against fingerprint tracking
by breaking one essential property: stability over time.

We leverage virtualization and modular architectures to au-
tomatically assemble and reconfigure software components at
multiple levels. We operate on operating systems, browsers,
fonts and plugins. This work is the first application of software
reconfiguration to build a moving target defense against browser
fingerprint tracking. The main objective is to automatically
modify the fingerprint a platform exhibits. We have developed
a prototype called Blink to experiment the effectiveness of our
approach at randomizing fingerprints. We have assembled and
reconfigured thousands of platforms, and we observe that all
of them exhibit different fingerprints, and that commercial
fingerprinting solutions are not able to detect that the different
platforms actually correspond to a single user.

I. INTRODUCTION

Most users customize their browsers by setting their lan-
guage, setting comfortable screen resolution and fonts, adding
plugins to provide features, etc. Companies and open source
communities have developed a massive diversity of software
components to personalize browsing platforms. However, the
downside to almost infinite customization is that users’ plat-
forms are unique. This, combined with easy access to the
browsing platform’s details, is leading to a new kind of privacy
concern called “browser fingerprinting”. Eckersley [1] shows
that through the collection of a small set of attributes (e.g.,
plugins, fonts, browser type, OS), it is possible to build a
browser fingerprint that is mostly unique and stable over time.
These two properties make it an excellent candidate to track
users. Fingerprinting, also called the “Cookieless monster” [2],
is stateless and does not store anything on the user’s device.
This makes protecting privacy harder than in the case of
cookies, while the adoption of fingerprinting is growing.

The diversity of software components to customize browsers
is the source of a major privacy problem. We argue that
this same diversity, combined with multi-level software re-
configuration, provides the foundations for a counter measure

to browser fingerprint tracking. The idea is as follows. A
browsing platform is assembled by randomly selecting a
coherent set of components (an OS, a browser, plugins, etc.).
Third parties collect, via the browser, enough information
about the platform’s components to form a fingerprint. We
then regularly reconfigure the platform—thanks to a large set
of diverse components—causing a different fingerprint to be
exhibited. Our approach breaks one essential property for the
exploitation of browser fingerprints: their stability.

We propose an original application of dynamic software
reconfiguration techniques to establish a moving target defense
against browser fingerprint tracking. We aim at regularly
changing the four most distinctive elements in a fingerprint:
the operating system, the browser, the list of fonts and the list
of plugins. We call these the Diversified Platform Components,
or DPC. Our approach consists in creating DPC configurations
by randomly selecting components from a large pool, called
the diversity reservoir. The DPC configurations are then used
to assemble and reconfigure the browsing platforms, leading
to diverse fingerprints being exhibited over time.

We experiment the effectiveness of our approach to mitigate
browser fingerprint tracking with our prototype tool called
Blink 1. We empirically assess Blink’s effectiveness in answer-
ing the following question: can we assemble and reconfigure
browsing platforms that exhibit truly dissimilar fingerprints
over time? We define a novel dissimilarity metric to compare
the fingerprints collected from the platforms that Blink assem-
bles. We also run commercial fingerprinting scripts to evaluate
their ability to recognize the fingerprints as coming from
the same user. The results show that the browsing platforms
exhibit fingerprints that are very dissimilar and can deceive
BlueCava, a popular commercial fingerprinting script.

The main contributions of this paper are:
• A moving target defense that leverages software diversity

and dynamic reconfiguration to automatically assemble
diverse browsing platforms.

• A dissimilarity metric that estimates the likelihood that
a fingerprinter will consider two fingerprints as coming
from the same platform.

• An experimental assessment of Blink’s ability to automat-
ically assemble random, dissimilar, and valid platforms.

1https://github.com/DIVERSIFY-project/blink

https://github.com/DIVERSIFY-project/blink


Section II presents the background and related work on
browser fingerprinting. Section III describes our approach, the
threat model we address, and discusses balancing privacy and
comfort through users’ preferences. Section IV details our pro-
totype, Blink. Section V presents our empirical observations,
while section VI concludes this paper.

II. BACKGROUND

Eckersley demonstrated that browser fingerprints are often
unique and unlikely to drastically change over time [1]. For ex-
ample, the fingerprint in Table I “appears to be unique” among
the more than four million fingerprints collected through the
Panopticlick website2. In this section we review the state of
the art and the state of practice on fingerprinting, as well as
existing solutions to prevent fingerprint tracking.

A. Fingerprinting techniques
The literature reports on many ways to fingerprint browsers.

User agent and Accept headers are automatically sent to
websites through HTTP headers. Other information, like the
list of plugins, the timezone or the screen’s resolution, are
easily accessible via JavaScript through the navigator and
screen objects [3]. The user agent gives basic information
on the operating system, while the Flash plugin gives more
precise attributes. Table I displays a fingerprint including,
through Flash, the Linux kernel version and the list of fonts.
According to Eckersley [1], fonts are one of the most dis-
criminating attributes. Another technique consists in testing
the JavaScript engine to identify the browser and to collect
information on the OS and hardware. Mulazzani et al. use
tests that cover the ECMAScript standard to find functional
differences between browsers [4]. Since every major browser
update brings new JavaScript functionalities, it is possible to
test for their presence (or absence). Mowery et al. benchmark
Javascript operations and use time differences to identify the
browser and the system’s architecture [5]. More hardware-
focused techniques also exist. In 2006, Murdoch introduced
CPU skew fingerprinting [6], which uses timing information
to fingerprint a device. Mowery et al. [7] and Acar et al. [8]
studied canvas fingerprinting. This technique uses the HTML5
Canvas to render an image. Different hardware or software
result in slight differences in the image.

B. The adoption of fingerprinting
Fingerprinting has already been adopted by many websites

to complement cookies as a means of tracking. For example,
the privacy policies of Google and Twitter declare they gather
such data to identify users. Google states they “may collect
device-specific information”, such as “operating system ver-
sion” or “unique device identifiers” 3, while Twitter indicates
they collect “Log data”, such as “browser type” or “device
information” 4. Other companies provide third party services
for purchase to easily fingerprint and track users. BlueCava is
a well known actor in this domain [3].

2https://panopticlick.eff.org/
3https://www.google.com/intl/en/policies/privacy/#infocollect
4https://twitter.com/privacy

TABLE I
EXAMPLE OF A BROWSER FINGERPRINT

Attribute Value
User agent Mozilla/5.0 (X11; Linux i686) Gecko/20100101

Firefox/25.0
HTTP accept text/html,application/xhtml+xml,application/xml;

q=0.9,*/*;q=0.8 gzip, deflate en-US,en;q=0.5
Plugins Plugin 0: IcedTea-Web 1.4.1; Plugin 1: Shock-

wave Flash 11.2 r202
Fonts Century Schoolbook, DejaVu Sans Mono, Bit-

stream Vera Serif, URW Palladio L, ...
HTTP DoNotTrack 1
Cookies enabled Yes
Platform Linux i686
OS (via Flash) Linux 3.14.3-200.fc20.x86 32-bit
Screen resolution 1920x1080x24
Timezone -480
DOM session storage Yes
DOM local storage Yes
I.E. User data No

C. Existing solutions to counter fingerprint-based tracking

Here we summarize solutions to limit browser fingerprint
tracking and highlight some of their shortcomings.

1) Blocking extensions: Browser extensions, such as No-
Script5, Ghostery6 and Privacy Badger7, can block finger-
printing scripts. NoScript only runs scripts that have been
whitelisted by the user. Ghostery and Privacy Badger prevent
browsers from downloading scripts from known trackers.
However, these extensions offer no guarantees against finger-
printing because it is hard to maintain up-to-date whitelists
or databases. Furthermore, privacy-enhancing extensions can
be counterproductive since their presence can be detected and
increases the identifying information from the browser [5].

2) Spoofing extensions: User agent spoofing extensions are
supposed to increase anonymity by lying about the user agent.
In January 2015, we found 23 user agent spoofers for Firefox
and 15 for Chrome, in their respective markets. However, as
shown by Nikiforakis et al. [2], a major problem with these
extensions is that they produce inconsistent headers (e.g.,
an iOS platform with the Flash plugin). For example, let us
consider the following excerpt of a fingerprint that contains
a user agent, and the platform object collected through both
the JavaScript and Flash APIs:
UserAgent={Mozilla/5.0 (compatible; MSIE
9.0; Windows NT 6.1; Trident/5.0)} ;
JS.platform={MacIntel} ;
Flash.platform={Mac OS 10.10.2}.

This fingerprint, collected from a browser using a spoofing
extension, exhibits an inconsistency: the user agent says the
browser is MS Internet Explorer and runs on Windows NT,
but the platform objects indicate Mac OS (not Windows and
cannot host an IE browser). Also, these extensions act only on
the user agent header and not on the entire fingerprint, allowing
cross-browser fingerprinting techniques [9] to succeed.

5http://noscript.net/
6https://www.ghostery.com/
7https://www.eff.org/privacybadger

https://panopticlick.eff.org/
https://www.google.com/intl/en/policies/privacy/#infocollect
https://twitter.com/privacy
http://noscript.net/
https://www.ghostery.com/
https://www.eff.org/privacybadger


3) Use of multiple browsers: Another solution is to use
multiple browsers, each one exhibits a different fingerprint.
However, Boda et al. [9] showed that changing browsers is
insufficient because fingerprinters can rely on OS-specific data,
fonts or plugins to compute a unique fingerprint since these
parameters do not evolve from one browser to the next. This
is known as Cross-Browser Fingerprinting.

4) Tor browser: The Tor browser is a modified Firefox
browser, specifically designed for the Tor network. This brow-
ser attempts to create a single configuration for all Tor users
so that no individual user can be identified. By design, the Tor
browser’s fingerprint is unique and thus known to fingerprint-
ers. The Tor network is not immune to threats or attackers,
as shown by Wang and Goldberg [10]. To remain effective,
customizability and personalization are severely hampered,
supplanted by the Tor browser’s mono-configuration. This is
also extremely brittle since a simple change (e.g., resize the
browser window) stands out among the limited number of Tor
users and can be immediately identified by fingerprinters.

5) PriVaricator: PriVaricator [11] is a solution designed
specifically to break fingerprint stability. It uses randomization
policies so the browser can decide when to lie about key
fingerprintable features, like the list of plugins or font sizes.
PriVaricator succeeds at fooling some well-known finger-
printers while minimizing site breakage. However, it only
addresses what the authors call “explicit fingerprinting”, i.e.,
direct attempts to collect attributes exposed by the browser.
PriVaricator does not address fingerprinting performed by
plugins like Flash that give access to the complete list of fonts.

III. APPROACH

This section establishes the threat model we target and goes
into the details of our moving target approach. We explain how
we leverage software diversity to change a user’s browsing
platform over time and we discuss the impact this has on both
fingerprints and user comfort.

A. Threat model

We aim at mitigating the exploitation of browser finger-
prints to track users, which is a direct threat to privacy. As
noted in section II, browser fingerprint tracking relies on the
following: web browsers allow remote servers to discover
sufficient information about a user’s platform to create a digital
fingerprint that uniquely identifies the platform. We argue
that fingerprint uniqueness and stability are the key threats
to browser fingerprint tracking, and in this work we aim at
breaking fingerprint stability over time.

B. A moving target defense against tracking

We propose to automatically reconfigure a user’s platform
to exhibit different fingerprints over time that cannot easily
be linked to one another. Figure 1 shows the elements of
a browsing platform that affect the fingerprint: configuration
data at different levels (HW, OS, browser); software compo-
nents that are assembled at different levels (e.g., apt-get,
browser plugins, fonts); hardware components, such as the

Browsing platform

Software components

OS browser
plugins fonts ...

Hardware components
CPU ...microphone

Configuration parameters
screen res. language ...
timezone

Dynamic 
attributes

canvas

DPC

...

network

Fingerprint

user agent fonts (name)

plugins (name and version)

exhibits

...
accept header

screen res.

Fig. 1. User platform elements involved in web browsing and exhibited in
the browser fingerprint.

graphics card; cross-level dynamic attributes collectable only
at runtime, such as through the HTML5 canvas. Once a user
starts browsing the web, these data are used to create a
fingerprint. We say that a platform exhibits said fingerprint.

Our approach reconfigures components that affect the ex-
hibited fingerprint. Nikiforakis et al. [2] show that current
commercial fingerprinters collect only a subset of all possible
attributes, and Eckersley [1] found the most distinguishing
attributes of a fingerprint to be fonts, plugins and user agents.
Other attributes are often shared by a large pool of users,
rendering them less discriminating. Based on this, we identify
the following set of Diversified Platform Components (DPC)
to be automatically reconfigured: fonts, plugins, browsers, the
operating system and the CPU architecture. We call a DPC
configuration a consistent assembly of a browser running in
an operating system, with a specific set of fonts and plugins.

Definition 1: Diversity reservoir is the set of components
used to assemble new configurations of the DPC. Given a set
O of operating systems for different architectures, a set B of
browsers of different types and versions, a set F of fonts and
a set P of plugins, the reservoir is DR = O ∪B ∪ F ∪ P .

Our intuition is that the same set of diverse software
components that cause fingerprint uniqueness can be exploited
to create very large diversification reservoirs. These can be
used to build trillions of distinct configurations to switch
among. Figure 2 illustrates this principle: we randomly select
components from the diversity reservoir to create DPC con-
figurations used in the browsing platforms. Over time we gen-
erate new configurations that replace previous ones, changing
the browsing platforms and the exhibited fingerprints. The user
decides when these changes occur. This approach falls into the
family of dynamic platforms, a specific form of moving target
approaches, as described by Okhravi et al. in [12].
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Fig. 2. Evolution of the user’s platform over time.

Our moving target defense relies on an essential charac-
teristic needed for reconfiguration: the modular architecture
of systems and browsers. Modularity makes it possible to re-
configure the browsing platform, on demand, by automatically
assembling components. This also allows us to progressively
assemble configurations instead of building them beforehand.

Our approach is characterized by three essential properties:
(i) the assembled platforms always exhibit consistent finger-
prints because the platforms are genuine and we do not lie
about any attributes; (ii) we assemble correct platforms, i.e.,
platforms composed of compatible components and which run
correctly; and (iii) each reconfiguration causes the exhibited
fingerprints to change. Section IV-B discusses the model that
supports the assembly of correct configuration and in section
V, we empirically demonstrate that variations in the exhibited
fingerprints deceive two commercial fingerprinting scripts.

C. Balancing privacy and browsing comfort

There are many places where user comfort conflicts with
potential gains in privacy. For example, we have included
browsers in the DPC because it is an important distinguishing
factor in a fingerprint. Yet, users populate their browsers with
data such as bookmarks, passwords and open tabs. We believe
that it is important to transfer user data between platforms we
assemble in order to keep a comfortable browsing experience
despite switching DPC configurations. We developed an offline
cross-browser tool that is responsible for transferring the user
profile between browsing platforms. We also acknowledge that
not all users are ready to randomize their favorite browsers
to obtain a different fingerprint, so we let them customize
DPC components. Users select components from the DPC that
will be included or excluded from all configurations. We call
alterable and essential the components that a user decides to
include, respectively discard from the set of DPC.

The choice of an essential or alterable component is subjec-
tive and can be done for functional reasons or for comfort. A
set of plugins might be crucial for someone’s web experience,
while another user may simply wish to never change browsers.
Furthermore, these choices directly impact the remaining size
of the diversity reservoir and thus, the search space for
randomization. The larger the set of essential components is,
the smaller the total search space will be.

Deciding when to reconfigure can also impact privacy and
comfort. This is a key decision because frequent changes

can be effective at mitigating tracking, but are disturbing to
users. However, waiting too long between changes increases
the time a user’s fingerprint remains static, leading to larger
sessions that can be tracked. We provide two strategies for
reconfiguration, a full reconfiguration strategy, called Leery,
and a light-weight one, called Coffee break.

Definition 2: The Leery strategy reconfigures all levels
of the browsing platform: the operating system, the browser,
the fonts and the plugins. Essential components are kept and
alterables are randomized. This strategy is used each time a
user starts a new session (i.e. starts a browser for the first time).
A fresh DPC configuration is generated and kept until the user
ends the session. It draws its name from its cautiousness by
reconfiguring as many components as possible.

Definition 3: The “Coffee break” strategy aims to be
faster than Leery by reconfiguring only fonts and plugins. The
browser and the operating system do not change. As always,
essential components are kept and alterable components are
randomized. This strategy is triggered in different ways: man-
ually, by having the user lock his computer, or by waiting for
a period of inactivity, hence the name.
It should be noted that reconfigurations do not occur while
the user is browsing the web. To explicitly change the current
fingerprint, a new session should be started (e.g., by restarting
Blink) or a Coffee break reconfiguration should be triggered.
Other strategies are also possible, but we feel these two cover
a wide range of uses. The experimental assessment of section
V-C shows that both strategies can defeat current commercial
fingerprinters, but they affect fingerprints differently (more
changes lead to more privacy).

D. Dissimilarity metric

To assess the effectiveness of fingerprint diversification, we
need to quantify the differences between fingerprints. To our
knowledge, there is no established measure to compare two
fingerprints, or to determine if two different fingerprints can
be related to a single platform. We define the following dis-
similarity metric that aims at capturing the difference between
the attribute values observed in two fingerprints.

D(FP1, FP2) =

∑8
i=1 ωattri × d(attri(FP1), attri(FP2))∑8

i=1 ωattri

The metric is the sum of dissimilarities between 8 attributes.
Its value is defined in the range [0,1]. Each attribute is
weighted according to Eckersley’s study [1]. Heavier weights
indicate more revealing attributes. This captures, for example,
that two fingerprints with the same fonts are closer than two
fingerprints with the same timezone. We also defined specific
dissimilarity functions d for attributes that are lists of values
(e.g., fonts, user agent). The weights ω and the dissimilarity
functions d are defined in Appendices A and B.

To illustrate the intuition behind our metric, let us consider
two variations of the fingerprint in Figure I. If we change the
browser from Firefox to Chrome and add plugins (as shown
in Table II), the dissimilarity between the new and original
fingerprints is 0.46. Intuitively, a third party would hardly



TABLE II
CHANGED ATTRIBUTES FOR EXAMPLE NO 1

Attribute Modified value
User agent Mozilla/5.0 (X11; Linux x86 64) AppleWebKit/537.36

(KHTML, Gecko) Chrome/34.0.1847.116 Safari/537.36
Plugins Plugin 0: Chrome PDF Viewer; libpdf.so, [. . . ] Plugin

12: gecko-mediaplayer 1.0.9;

TABLE III
CHANGED ATTRIBUTES FOR EXAMPLE NO 2

Attribute Modified value
User agent Mozilla/5.0 (X11; Linux i686; rv:26.0) Gecko/20100101

Firefox/26.0

consider fingerprints with different browsers and plugins to
come from the same user. In the second example, only the
browser version is modified (Table III). The dissimilarity
is then 0.01, which indicates that the two fingerprints are
almost identical. This fits our intuition: it is very likely that a
browser’s version will change at some point in time (e.g., it
is updated). Thus, similar fingerprints according to our metric
are fingerprints that are likely to be detected as originating
from the same user. These two examples illustrate that some
differences are more revealing than others, which is what our
dissimilarity metric is capturing.

E. Positioning w.r.t. existing solutions

Our proposal is to reconfigure the browsing platform at
multiple levels, causing the platform to exhibit a different
fingerprint each time. It falls into the family of moving target
techniques, as described by Okhravi et al. [12]. It is, by their
classification, a dynamic platform, and is similar in nature
to creating moving attack surfaces for web services [13].
Consequently, Blink’s advantage over user-agent spoofers is
to never lie. Fingerprints exhibited by the browsing platforms
are based on genuine configurations, with genuine browsers,
and genuine operating systems. By construction, there are
no inconsistencies among the fingerprint attributes, which
prevents standing out as a liar. Our approach also relates to
secretless strategies because knowing the fingerprint reconfig-
uration strategy (random selection of DPC components) is not
enough to defeat it. Cox et al. give insight into the wealth
of security advantages obtained through software diversity,
particularly when there are no secrets to hide [14].

Cross-browser fingerprinting shows that simply changing
browsers is not enough because other attributes, such as fonts
and plugins, are sufficient to create unique fingerprints [9]. We
counter these attacks by randomly changing multiple levels of
the browsing platform, not only the browsers.

The main drawbacks of the Tor browser are its usability and
the brittleness of its fingerprint. Users should not change any
of the Tor browser’s configuration options, nor add plugins,
because their fingerprint will diverge from the base fingerprint,
disrupting the unique fingerprint approach and making them
identifiable. Our approach is the opposite: we create unstable,
always changing platforms that exhibit very different finger-
prints. We welcome the addition of user plugins and fonts.

And we do not force the use of any restrictive extensions (e.g.,
NoScript) that severely alter the browsing experience.

Finally, we do not rely on blocking fingerprinting scripts.
Maintaining proper lists of scripts requires significant effort.
Blink works as a moving target defense system that is obliv-
ious to fingerprinting scripts. Blink also has the potential to
resist currently unknown fingerprinting attacks thanks to the
use of multi-level reconfigurations.

IV. IMPLEMENTATION

Blink reconfigures the alterable components of a DPC
configuration in order to assemble unique browsing platforms.
Each unique platform will exhibit a unique fingerprint because
the platform components permeate the fingerprint, as seen
in figure 1. Hence, by reconfiguring the platform, distinct
fingerprints are exhibited. However, several issues need to be
addressed for this to work in practice. Namely, the imple-
mentation must assemble and reconfigure DPC configurations
that lead to platforms that function correctly. The diversity
reservoir must be built up to provide a large reconfiguration
space. And, finally, changing from one DPC configuration to
another should be made as simple and transparent as possible.

This section describes how Blink assembles random brows-
ing platforms, achieves a large amount of fingerprint diversity,
and maintains a multi-platform user profile to improve usabil-
ity. We have implemented Blink using both reconfiguration
strategies described in section III-C. Those implementations
are later referred to as Leery Blink and “Coffee break” Blink.

A. Multi-level reconfiguration

Blink leverages the modular architecture of operating sys-
tems and browsers to randomly assemble browsing platforms
that function correctly and exhibit unique fingerprints. To max-
imize the reconfiguration space and the diversity of exhibited
fingerprints, it is important to change as many components as
possible, including the CPU architecture, the operating system,
the browser, plugins and fonts, which are all statistically im-
portant for fingerprinting. Although it is possible to randomize
some components directly in the user’s system, changes such
as adding and removing fonts can have negative side-effects
on other applications. More importantly, certain components,
such as the operating system or the CPU architecture, cannot
be directly changed. It has been shown by Boda et al. [9]
that if enough data is gathered from a system it can still be
fingerprinted and tracked despite the use of multiple browsers.
For these reasons, Blink uses virtual machines to maximize
the diversity space that can be exploited by randomizing the
operating system and the CPU architecture, all the while
maintaining a high degree of isolation between the user’s
system, fingerprinters and the reconfiguration process.

Blink assembles components at multiple levels to form the
browsing platform shown in Figure 3. We use the term multi-
level reconfiguration because the selection of higher level
components in the platform directly depends on lower level
ones (e.g., a browser plugin depends on the browser, which
itself depends on the operating system). Fonts are a special
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Fig. 3. A multi-level view of browsing platforms. Virtualization isolates the
user’s system.

case because although they do not have hard dependencies to
or from other components in a DPC configuration, they do
impact all user interface applications, including browsers and
websites. Moreover, the modularity mechanisms are not the
same for all levels: there are different dependency management
tools in systems and in browsers, different plugin types and
versions for different browsers, different CPU architectures,
etc. Fonts may also be specific to a given system due to
licensing or packaging issues.

1) Operating system reconfiguration: Blink uses Virtual-
Box to isolate browsing platforms because it is open source
and multi-platform (supports Linux, Mac OS and Windows
as both host and guest). Also, VirtualBox abstracts hardware
(enabling us to randomize the CPU architecture), provides
extensive functionality, has low overhead, and allows for a
number of configuration parameters. Added bonuses are a
user-friendly GUI and guest additions to improve integration.
However, it could be substituted with other solutions.

We use VirtualBox’s shared folders to transfer data between
the host and the VMs. Launching a browsing platform starts
the assembly of a randomized DPC configuration (i.e., OS,
fonts, plugins, browser). The browser, fonts and plugins are
copied to shared folders, as is the user’s profile (i.e., open
tabs, bookmarks, downloads, saved passwords). VMs start the
BlinkVM.py monitoring script, whose job is to install fonts
and plugins, prepare the user profile, launch and monitor
the browser, and listen for commands from the host (e.g.,
shutdown, coffee break reconfiguration). When shutting down,
shared folders are cleaned and the user-profile is recovered.
VMs are additionally snapshotted when launched and rolled
back to their pre-browsing states when the browsing session
ends. This ensures the platform returns to a known stable state
that is free of temporary files, cookies, trackers, and malware.
Finally, because the OS is low-level, reconfiguring it can cause
the browser and plugins to be invalidated.

2) Font reconfiguration: To install a font, the font file must
be copied to the correct folder and registered. However, many
applications do not detect font changes dynamically. We tested
two methods to list the fonts available in browsers, namely
Adobe Flash font enumeration and JavaScript font probing.
Our results indicate that to ensure font changes are reflected

in the exhibited fingerprint you should restart the browser.
3) Browser reconfiguration: Installing a browser requires

copying the installation folder and running the main exe-
cutable. Browser’s run as processes so changing from one
browser to another is as simple as stopping and starting them.

4) Plugin reconfiguration: Installing a plugin is as simple
as copying a file to the proper plugin directory. However, un-
like fonts, plugins are compiled for a specific CPU architecture
and operating system, and can have runtime dependencies on
configuration files or system libraries. Furthermore, not all
plugins work in all browsers. We focused on randomizing
NPAPI plugins (compatible with most browsers) and PPAPI
plugins for Chrome (as of January 2015, NPAPI plugins are
blocked by default 8). When reconfiguring, plugins must match
the CPU architecture (e.g., i686, IA-64, amd64), the operating
system (e.g., Windows, Linux), and the browser (e.g., Firefox,
Chrome) of the DPC to work properly. Interestingly, plugin
support is often dynamic, as is the case with Chrome, Opera
and Firefox. This allows Blink to reconfigure the plugin list
at runtime, and is used for Coffee break reconfigurations to
immediately change the exhibited fingerprint without restarting
the browsing platform.

B. The diversity reservoir
At the heart of Blink is the idea that exploiting software

diversity can create an ever changing browsing platform that
limits attempts to track its users through browser fingerprint
tracking. However, this diversity has to be built; software com-
ponents must be collected and managed to ensure consistent,
functional platforms are assembled and reconfigured.

1) Building the diversity reservoir: The operating system
is the base of the browsing platform. We built VMs using
various operating systems, although we focused on the Ubuntu
and Fedora Linuxes for the i686 and x86 64 architectures.
Many pre-built Linux and *BSD VMs can be downloaded
freely over the internet to avoid the installation process.
Other operating system’s often require licenses and cannot be
freely distributed. Once built, each VM must be configured to
work with Blink. This includes setting up shared folders and
configuring Blink’s monitoring script to auto-start.

We focused on the Chrome and Firefox browsers and down-
loaded multiple versions of each from the vendors’ websites.
There’s one version for each combination of release channel
(stable, beta and development) and CPU architecture (i686 and
x86 64). It is easy to add browsers and there are a number
of forks for both Chrome (Chromium, SRWare Iron, Epic,
. . . ) and Firefox (Iceweasel, Seamonkey, . . . ) that are trivial
to integrate. To add a browser you must unpackage it into
Blink’s browser folder and follow the naming convention.

We wrote scripts to crawl the Ubuntu and Fedora reposito-
ries for fonts. We found many duplicate fonts, yet some fonts
tend to be specific to a distribution. Moreover, fonts are most
often installed in groups, as seen with packages that install
multiple fonts. Blink allows defining font groups and system-
specific fonts to avoid exhibiting uncommon fingerprints.

8http://blog.chromium.org/2014/11/the-final-countdown-for-npapi.html

http://blog.chromium.org/2014/11/the-final-countdown-for-npapi.html


Browser.arch = 64 ⇒ OS.arch = 64
Browser.arch = 64 ⇔ Plugin.arch = 64 
Browser.arch = 32 ⇔ Plugin.arch = 32

Chrome ⇔ Plugin.type = PPAPI
Firefox ⇔ Plugin.type = NPAPI
Silverlight ⇒ Windows
Ubuntu ⇔ Familty Ubuntu

DPC config

OS
Architecture:

{i686,x86_64}

Browser
Architecture:

{i686,x86_64}
OS:

{Windows,Linux}

Plugin
Architecture:

{i686,x86_64}
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{PPAPI,NPAPI}
OS:

{Windows,Linux}
Windows Linux

Fedora Ubuntu

Chrome

Flash Java VLC

Family
DejaVu

DejaVu
Sans.ttf

Font
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sub-feature

Optional
sub-feature

XOR group

Legend

Version :
{34,35,36}

Firefox
Version :

{28,29,30}

DejaVu
Serif.ttf

Family
Droid

Droid
Sans.ttf

Droid
Serif.ttf

Silverlight ...

Family
Ubuntu

Ubuntu
Mono.ttf

Ubuntu
MI.ttf

...

Windows ⇔ Browser.OS = Windows
Windows ⇔ Plugin.OS = Windows
Linux ⇔ Browser.OS = Linux
Linux ⇔ Plugin.OS = Linux

Fig. 4. An extract of the feature model used for assembling valid DPC configurations.

The biggest challenge with plugins is to account for the
wealth of browser, operating system and CPU architecture
combinations necessary for a plugin to function correctly in
each possible DPC configuration. To obtain a large set of
plugins for fingerprint diversity, we wrote scripts to crawl the
Fedora and Ubuntu Linux repositories and look for plugins
in all packages, for both i686 and x86 64 architectures.
When a plugin is found, the package is downloaded, and the
plugin is extracted. Any dependencies towards, for example,
configuration files or system libraries are also extracted.

2) Modeling the well-formedness constraints in the diversity
reservoir: We use feature modeling to ensure DPC configura-
tions are valid before the browsing platforms are assembled or
reconfigured. This helps establish the restrictions and conflicts
among the different components in the diversity reservoir.
The attributed feature model defines the valid configurations,
i.e. configurations that can fundamentally run. We provide an
extract of the feature model in Figure 4. A DPC configuration
is composed of 4 mandatory features: an OS, a browser,
plugins and fonts. It must be noted that some features in this
model have attributes that specify the feature’s characteristics
and have domains that define possible values. For example, the
attribute Type in the feature Plugin specifies that a plugin is
either of type Netscape Plugin API (NPAPI) or Pepper Plugin
API (PPAPI). Relations in the feature model and cross-tree
constraints (see bottom of Figure 4) specify the set of rules
that must be fulfilled for a DPC configuration to be valid
and “runnable”. For example, the first constraint states that
a browser with a 64 bit architecture implies a 64 bit OS.

C. Discussion and further development

It can be argued that using virtual machines to run browsers
is costly. However, current computers can easily run multiple
VMs simultaneously. Many developers already use multiple
VMs to target different platforms. VMs allow Blink to target
multiple platforms and architectures, and to reconfigure the
OS, all important discriminators in fingerprints. Moreover,
the use of VMs presents beneficial side-effects: it provides
very strong sandboxing for all web activity, including Firefox,
which does not have a native sandbox. In our implementation,

snapshots are used to return VMs to known safe-states, re-
moving cookies and other browsing artifacts. In the end it’s a
tradeoff between performance, comfort and better privacy.

On the technical side, the current implementation of Blink
only assembles and reconfigures Linux platforms. But, given
the technical choices made, the implementation can be ex-
tended to OS X and Windows. We plan to increase the
diversity reservoir by adding more browsers and OSs.

Users of our approach could potentially be spotted as
having “strange” fingerprints. To mitigate this effect, we
have deployed the https://amiunique.org/ web site to collect
real fingerprints. So far, we have collected more than 63000
fingerprints. We observed that fingerprints rarely have more
than 20 plugins and that the number of fonts range from 50
to 550. We derived two normal distributions from the data we
collected and use them to set the number of fonts and plugins
that we add to each DPC configuration. This way, we do not
end up with configurations that would never be observed in
the wild, improving the chances that Blink users do not stand
out. In future work we want to exploit the insights from real
fingerprints to bias the assembly of DPC configurations.

V. EMPIRICAL ENQUIRY OF MULTI-LEVEL
RECONFIGURATION

We present a series of experiments to validate the effective-
ness of multi-level platform reconfigurations at breaking
fingerprint stability over time.

A. Research questions

The experiments aim at answering the following questions.
RQ1. How diverse is the sequence of fingerprints exhib-

ited by the assembled platforms? This question evaluates
the ability of our approach at using the diversity reservoir to
assemble series of platforms that exhibit different fingerprints.
We measure the dissimilarity between the fingerprints exhib-
ited by each consecutive pair of platforms.

RQ2. How diverse are the platforms in the eyes of
actual fingerprinters? This question evaluates the ability of
our approach to deceive commercial fingerprinting scripts.

https://amiunique.org/


B. Experiment setup

1) Our fingerprinting script: All experiments require col-
lecting and analyzing the browser fingerprints exhibited by the
assembled browsing platforms. We developed a fingerprinting
script inspired by Panopticlick [1], with some improvements to
gather more data via JavaScript and Flash. It works by gath-
ering data through HTTP headers and JavaScript attributes,
and it uses Flash to gain access to unique attributes in the
ActionScript API. We collect the attributes listed in Table I.

2) Third-party fingerprinting scripts: BlueCava is a com-
pany that offers websites to “recognize devices (i.e., comput-
ers, mobile phones & tablets)” for advertising purposes9. One
tool in their arsenal is a script that uses JavaScript and Flash
to fingerprint devices. BlueCava provides a page10 for users
to opt-out of tracking that shows the identifier associated with
your device. We collect these identifiers for our assembled
browsing platforms. It should be noted that the identification
algorithm is on the server side and is unknown to us.

Acar et al. [8] discovered a canvas fingerprinting script
on the AddThis website that has since been removed11. The
script works by sending the browser some text to render
using the HTML canvas element. The text is converted into
an image that is sent back to the server. Pixel variations in
the image indicate differences in hardware and software used
in rendering, opening the door to fingerprinting. We use the
getDataUrl() function of the canvas element to get a URL
representation of the image that allows easy comparisons.

3) Dataset: An original platform represents the user’s
browsing platform as it exists in the host operating system. The
content of this platform can have a strong impact on Blink’s
ability at producing diverse platforms, since we import the
user’s fonts and plugins when assembling a DPC configuration.
In essence, the plugins and fonts of the user’s platform are
included as essential components in the assembled platforms.

We test Blink’s effectiveness using 25 original platforms.
Each original platform has from 1 to 25 plugins, and from 20
to 520 fonts. The diversity reservoir for our experiments is: 4
Virtual machines (Fedora 20 32/64 bits, Ubuntu 14.04 32/64
bits); 2762 fonts; 39 browser plugins; 6 browsers, including 3
versions of Firefox: 28.0 (stable), 29.0 (beta), 30.0 (aurora),
and 3 versions of Chrome: 34 (stable), 35 (beta), 36 (unstable).

4) Experimental protocol: For each of the 25 original plat-
forms, we assemble 2 sequences of 100 platforms, providing
a total of 5000. For every assembled platform, we collect
the exhibited fingerprint using our script, and we collect
the BlueCava and AddThis identifiers using their commercial
fingerprinting scripts.

C. Results

RQ1. How diverse is the sequence of fingerprints exhib-
ited by the assembled platforms?

9http://bluecava.com/privacy-policy/
10http://bluecava.com/opt-out/
11https://www.addthis.com/blog/2014/07/23/the-facts-about-our-use-of-a-

canvas-element-in-our-recent-rd-test/
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Fig. 5. Dissimilarity between consecutive platforms (Leery mode)
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Fig. 6. Dissimilarity between consecutive platforms (Coffee break mode)

This question aims at validating that the browsing plat-
forms we assemble exhibit different fingerprints over time.
We estimate this by checking that two consecutive platforms
exhibit fingerprints that are dissimilar. Thus, for each original
platform, we collect the sequence of fingerprint dissimilarities
by pairs of consecutive platforms:

dissim seq = (D(FPi, FPi+1))1≤i≤99
For each of the 25 original platforms, we collect two

sequences of dissimilarity values, which correspond to the
2 sequences of 100 assembled platforms. Figure 5 displays
the distribution of dissimilarities in both dissim seq for each
original platform, in Leery mode. Figure 6 displays them in
Coffee break mode. The X-axis in the figures correspond to
the ID of the original platform, and the Y-axis represents
the distribution of dissimilarities between pairs of consecutive
platforms. The red line indicates the mean dissimilarity value
among the 5000 collected fingerprints.

Regarding the Leery strategy, Figure 5 shows that Blink
is successful at assembling successive platforms that exhibit
very dissimilar fingerprints, with results up to 0.77. Blink can
also assemble platforms that are very similar, with some pairs
of successive platforms having dissimilarity values as low

http://bluecava.com/privacy-policy/
http://bluecava.com/opt-out/
https://www.addthis.com/blog/2014/07/23/the-facts-about-our-use-of-a-canvas-element-in-our-recent-rd-test/
https://www.addthis.com/blog/2014/07/23/the-facts-about-our-use-of-a-canvas-element-in-our-recent-rd-test/


as 0.01. Since we have a relatively small pool of operating
systems and browsers, it is likely that the OS or browser was
the same from one configuration to the next. So, depending
on randomization, consecutive fingerprints can be very similar
or very dissimilar. Yet, despite frequent, large variations in
dissimilarities, mean values are high thanks to our large pool
of fonts and plugins.

When comparing Figures 5 and 6, the most noticeable
differences are the ranges of dissimilarity. In Leery mode,
dissimilarity varies between 0.01 and 0.77, while in Coffee
break mode dissimilarity varies between 0.08 and 0.36. This
shows the benefits of switching the operating system and
browser. The mean dissimilarity values in Leery mode are
more than twice as high as the ones in Coffee break mode.

Dissimilarity slowly declines as the numbers of fonts and
plugins grow with each original platform. This trend occurs
with both reconfiguration strategies and can be explained
by the fact that the assembled platforms start to share a
larger set of common plugins and fonts, lowering the overall
dissimilarity score for both attributes. In the end, even if the
dissimilarity is lower if we import a lot of fonts and plugins
from the user’s system, Blink still produces highly dissimilar
configurations with an average above 0.4 in Leery mode.

We conclude from these observations that Blink generates
configurations that are truly different from one another. It
corresponds to our objective of breaking the stability of
fingerprints over time, and shows its effectiveness in blocking
the ability of fingerprinters to track users. Variations in Blink’s
effectiveness are due to the richness of the original platforms
and on the size of the diversity reservoir.

RQ2. How diverse are the platforms in the eyes of ac-
tual fingerprinters? To answer this, we collected fingerprint
identifiers from BlueCava and AddThis for each assembled
platform. When these scripts assign the same identifier to two
platforms, it means they consider them to be the same.

1) BlueCava browser fingerprinting script: In our tests
more than 99% of the identifiers we collected were different
(we had similar results for both Leery and Coffee break
modes). BlueCava’s script is not able to detect that the
assembled platforms are from the same user, in part due to
BlueCava taking into account even the slightest differences in
a fingerprint. This shows that Blink is effective against unique
identifiers, and confirms that Blink can deceive BlueCava, even
when fingerprint diversity is low.

2) AddThis canvas fingerprinting script: From the 5000
assembled platforms, we obtained 181 different identifiers in
Leery mode and 34 in Coffee break mode using the AddThis
script. Blink performs relatively well despite the fact that
canvas fingerprinting targets the GPU and low-level drivers.
We can also see that Leery is 5 times more effective than
Coffee break because the OS and browser change. Currently
the DPC does not include graphical components (e.g., GPU
drivers) or GPU/HTML5 specific configurations, but we plan
to explore this in the future.

D. Threats to validity

To our knowledge, characterizing the impact of moving
target defenses on security is an open challenge [15]. Still,
this section provided empirical evidence of the effectiveness
of Blink’s behavior with respect to fingerprinting. We now
summarize the threats to the validity of our findings.

While no established metric exists to evaluate the effective-
ness of fingerprinting countermeasures, we defined our own
dissimilarity metric. This is a construct threat because the
metric might not properly reflect the ability of fingerprinters to
decide if a fingerprint is from a distinct platform. To mitigate
this threat, we based fingerprint attribute weights on the obser-
vations from Eckersley’s extensive study [1]. We also collected
identifiers from third-party commercial fingerprinting scripts.

The external validity lies in the ability to generalize our
observations. We evaluated Blink’s effect on 25 initial situ-
ations, with a pool of 6 browsers and 4 operating systems,
all running Linux platforms. Starting from these situations,
Blink is able to assemble platforms that exhibit very different
fingerprints. Yet, we do not know how Blink behaves in other
situations (e.g., users that have a very large set of essential
fonts). We are exploring a new domain (mitigating fingerprint-
based tracking) and further quantitative and usability studies
are needed to establish a comprehensive understanding of
moving target approaches in this domain.

Internal validity very much depends on the correct imple-
mentation of Blink, as well as both the fingerprinting scripts
and the metrics. We mitigated this risk through thorough
testing campaigns, and thousands of runs to tune Blink. Yet,
there might be bugs that influence our results. We hope that
they only change marginal quantitative things, and not the
qualitative essence of our findings.

VI. CONCLUSION

This work explores the opportunity of exploiting automatic,
multi-level reconfiguration and the natural diversity of soft-
ware components in order to create a moving target defense
against browser fingerprint tracking. We leverage virtualization
and modular architectures at various levels (OS and browser)
to modify, over time, the parts of a user platform that are
the most identifying in a fingerprint. This completely new
approach allows users to exhibit a diversity of fingerprints
without lying. We also contribute a novel dissimilarity metric
to evaluate the differences between two fingerprints and esti-
mate the likelihood they belong to the same user. A tool named
Blink has been developed to assess the effectiveness of this
approach. Our empirical results, based on the analysis of 5000
fingerprints exhibited by randomly assembled configurations,
show that Blink generates very dissimilar configurations and
can deceive BlueCava, a commercial fingerprinting script.

We plan to increase the size of our diversity reservoir
to generate even more diverse configurations. We have also
deployed the https://amiunique.org/ website to inform users
about fingerprinting and to collect a large number of real
fingerprints, which will help us improve Blink.

https://amiunique.org/
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APPENDIX A
FINGERPRINT ATTRIBUTE WEIGHTS

Attribute Entropy(bits)
User agent 10.0

Accept Header 6.09
Plugins 15.4
Fonts 13.9

Screen resolution 4.83
Timezone 3.04

DOM storage 2.12
Cookies 0.353

APPENDIX B
FINGERPRINT DISSIMILARITY

This annex provides the strategy to determine the
dissimilarity between the eight fingerprint attributes.

[Attribute 1] User agent: We decompose the user agent
attribute into two categories: data related to the browser and
its version, and data related to the architecture of the device
(32 or 64 bits).

Fbr =



0 br.nameFP1 = br.nameFP2 ∧
br.verFP1 = br.verFP2

0.125 br.nameFP1
= br.nameFP2

∧
br.verFP1

6= br.verFP2

1 br.nameFP1
6= br.nameFP2

Farchi =

{
0 archiFP1

= archiFP2

1 archiFP1
6= archiFP2

We grant equal weight to both these categories. The result-
ing dissimilarity between the user agents in two fingerprints
is computed as follows:

d(attr1(FP1, FP2)) = 0.5× Fbr + 0.5× Farchi

[Attribute 2] Plugins: Let us consider LP (FP1), the set of
plugins in fingerprint 1 and LP (FP2), the set of plugins in
fingerprint 2. Plugins are stored in a list of tuples where the
first element of each tuple is the name of the plugin and the
second its version. We define two different sets for plugins
that are common to both fingerprints: one where plugins have
an identical version (LP=name,=ver) and one where plugins
have different versions (LP=name, 6=ver).
P ∈ LP=name,=ver if ∃P1 ∈ LP (FP1) ∧ ∃P2 ∈ LP (FP2),
P1.name = P1.name ∧ P1.ver = P2.ver ∧ P.name =
P1.name = P2.name
P ∈ LP=name, 6=ver if ∃P1 ∈ LP (FP1) ∧ ∃P2 ∈ LP (FP2),

P1.name = P1.name ∧ P1.ver 6= P2.ver ∧ P.name =
P1.name = P2.name

The total number of plugins in both lists is computed as
follows (we count the plugins that appear in both lists once):

FU = |(LP (FP1) \ (LP (FP1)∩LP (FP2)))∪LP (FP2)|
We calculate the proportion of plugins that are unique to

FP1 and to FP2 as:

F1 =
|(LP (FP1) \ (LP=name,=ver ∪ LP=name, 6=ver))|

FU

F2 =
|(LP (FP2) \ (LP=name,=ver ∪ LP=name, 6=ver))|

FU
We get the proportion of common plugins:

F3 =
|LP=name, 6=ver|

FU
F4 =

|LP=name,=ver|
FU

The dissimilarity between the plugins in two fingerprints is
computed as follows:

d(attr2(FP1, FP2)) =
F1 + F2− 0.75× F3− F4 + 1

2
The dissimilarity for this attribute ranges from 0 to 1

with greater values representing an increasing dissimilarity
between the two lists of plugins.

[Attribute 3] Fonts: The dissimilarity between two lists of
fonts is the proportion of fonts that are only in one fingerprint,
minus the proportion of fonts that are in both. This term is 0 if
both lists are identical and 1 if they are completely different.

Let us consider LF (FP1), the set of fonts in fingerprint
1 and LF (FP2), the set of fonts in fingerprint 2. The total
number of fonts in both lists is computed as follows (we count
the fonts that appear in both lists only once):

FU = |(LF (FP1)\ (LF (FP1)∩LF (FP2)))∪LF (FP2)|
The proportion of fonts unique to FP1 is:

F1 =
|(LF (FP1) \ (LF (FP1) ∩ LF (FP2)))|

FU
The proportion of fonts unique to FP2 is:

F2 =
|(LF (FP2) \ (LF (FP1) ∩ LF (FP2)))|

FU
The proportion of common fonts is:

F3 =
|(LF (FP1) ∩ LF (FP2))|

FU
The dissimilarity between the fonts in two fingerprints is:

d(attr3(FP1, FP2)) =
F1 + F2− F3 + 1

2
[Attributes 4 - 8] Accept Header, Screen resolution, Time-

zone, DOM storage, Cookies: These attributes can be com-
pared without additional processing. The dissimilarity between
these attributes is:

d(attrX(FP1), attrX(FP2)) ={
0 attrX(FP1) = attrX(FP2)

1 attrX(FP1) 6= attrX(FP2)
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