
Increasing Information in Socio-Technical MAS
Considered Contentious

Vivek Nallur∗, Julien Monteil∗, Tyler Sammons†, Mélanie Bouroche∗, Siobhán Clarke∗
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Abstract—Socio-technical systems differ from typical MAS
formulations in that efficiency of the system is not the only
concern of the participating agents. Human attributes such
as concern for social equity, lying and irrationality are also
present, alongside the normal computation being undertaken by
the agents. Typically, non-rational attributes are considered as
noise and therefore not considered as important attributes of the
system. In this paper, we consider noise in socio-technical systems
and show that the typical reaction of increasing information to
counter noise is ineffective. We show that endowing agents with
increased memory and/or computational power is not necessarily
beneficial to achieving the goal of the system.

I. INTRODUCTION

Self-adaptive socio-technical systems are all around us,
though not explicitly recognized as such. From electronic mar-
ketplaces where participants are inherently self-interested (e.g.,
ebay, amazon, etc.), to P2P networks where participants share
bandwidth (e.g., torrents), to volunteer computing networks
where participants donate time and computing resources(e.g.,
Folding@Home, Seti@Home, Milkyway@Home, etc.) these
systems combine algorithmic mechanisms to optimize some
parameter, with a variety of human-targetted features to en-
courage participation. The success of these systems depends
on multiple factors, like how efficiently the system reaches
the desired goal, or how motivated the participating humans
are. Modelling such systems formally is usually difficult due
to the complexity of behaviour of the participating agents.
Game theoretic approaches which offer analytic solutions,
assume complete rationality on behalf of the agents, which
are often hard to reconcile with real/observed autonomic
behaviour. Multi-Agent Systems (MAS) are frequently used
as a mechanism to get around such assumptions, and also to
support computation at large scales (e.g., city-scale modelling).

Creating agents that reasonably approximate the actual
behaviour of the individual in the system is a major challenge,
in the design of MAS solutions. Agents, while autonomous,
must possess the right amount of information such that they
are able to compute solutions to their problems. Adding more
information, in the form of increased memory or sophisticated
computational strategies, is the intuitive approach to overcom-
ing this challenge, in competitive situations. For example, in
the area of agent-based auctions, Gode and Sunder had shown
that agents with Zero Intelligence could achieve equilibrium
prices [1]. However, subsequent works almost universally add
information, either in the form of increased memory or so-
phisticated strategy [2]–[4]. In the context of MAS, we define

a socio-technical system as a MAS system which contains
a mix of humans and computational devices, jointly making
decisions. The computational devices provide fast, calculating
ability along with rational choices, while the humans influence
the actual decisions. Due to this, socio-technical systems may
exhibit non-rational behaviour in the form of spontaneous
cooperation, lying, etc. These behaviours are not uniformly
present amongst all agents in a socio-technical system. Some
individuals may decide to cooperate at a particular point in
time, and then shift to non-cooperation. Furthermore, social
equity amongst the rewards achieved by the agents, is a
particular concern in socio-technical systems. Social equity
is roughly defined as the opportunity for each participating
agent to grab some rewards, as opposed to some MAS where
it does not matter if the optimal solution involves a majority of
agents losing out, at the individual level. When both rational
as well as social behaviour are present, the intuitive approach
of adding information to agents to enable better performance,
is actually counter-productive. In this paper, we show through
simulations of two very different systems, that increasing the
amount of information available to an agent is not directly
proportional to increase in system performance. We use the
Minority Game [5], a game involving self-coordination, and
Vehicular Networks (VN) as our exemplars.

II. MINORITY GAME

The Minority Game (MG), introduced by Challet and
Zhang, consists of an odd number (N) of agents, playing a
game in an iterated fashion. At each timestep, each agent
chooses from one of two actions (+1 or 0), and the group
that is in the minority, wins. Since N is an odd integer, there
is guaranteed to be a minority. Winners receive a reward,
while losers receive nothing. After each round, all agents are
told which action was in the minority. This feedback loop
induces the agents to re-evaluate their action for the next
iteration. While simple in its conception, this game has been
used in many fields like econophysics [6]–[10], multi-agent
resource allocation [11]–[13], emergence of cooperation [14],
and heterogeneity [12], [15]. The Minority Game (MG) is
intuitively applicable to many domains, such as traffic (the
driver that chooses the ‘less-travelled’ road experiences less
congestion), packet traffic in networks, ecologies of foraging
animals, etc. The Minority Game has been used, primarily,
to investigate the efficiency of strategies in the system when
individuals have bounded rationality (for an extensive review,
see [16]). We conceive of a Minority Game as a special
(simplified) case of a socio-technical system.



Variable Value

Memory 3

Strategies-per-Agent 8

Population Size 501

Simulation Period (rounds) 2000

TABLE I: Experimental constants

A. Description of Experiments

An agent in MG is characterized by two variables, m and
s, where m refers to the memory of the agent, and s refers
to the set of strategies used by the agent. The agent keeps
score of which strategy performs best, and uses that strategy
in conjunction with the history (the last m winning actions)
to decide its next action. The agent is free to change its
strategy, and associated action, after every iteration. In their
paper [5], Challet and Zhang show that with a small m and
s, the agents self-organize into an efficient state, where the
number of winners (the minority) after some iterations, is
greater than would be expected by a random throw of a coin.
In our experiments, we measure the following two variables:

• Mean Dispersion: the dispersion of payoff is the
absolute difference between the number that were in
the majority and the number that were in minority.
The ideal dispersion value per iteration is 1, when
the size of the majority is one more than the size
of the minority. In reality, the system tends to start
at some high value and continues fluctuating around
a mean value without ever settling down. The mean
value of dispersion over a large number of iterations is
therefore, used to measure the efficiency of the system.

• Social Payoff: the social payoff models the dispersion
of rewards amongst the agents. This is so because
we do not want a situation where the same group of
agents continuously choose one or the other action.
This could lead to a very efficient system, but would
also be unfair to the individual agent. In an equitable
system, we would like each agent to have an equal
chance of being in the minority. We measure social
payoff, as the rewards achieved by each agent. In the
ideal case, all agents would achieve a high mean social
payoff, with a standard deviation of zero. In reality,
the mean social payoff varies highly, with a high value
of standard deviation.

Together, they represent the efficiency and the equity of a
self-coordinating MAS. Agents in the MG vary over m and s.
Over all the experiments, we keep the variables constant, as
shown in Table I. Each datapoint on each graph is a mean of
data from 10 simulations.

B. Addition of Cooperation

We model the introduction of cooperation into MG, by
introducing the concept of a logical neighbourhood. An agent

is randomly assigned a set of neighbouring agents, and after
every iteration, the agent is able to query its neighbours
about their next action. Depending on the responses of the
neighbours, the agent is able to choose the minority action.
Clearly, the greater the size of the neighbourhood, the greater
should be the ability of the agent to predict correctly.

Fig. 1: Effect on social payoff as cooperation increases

Fig. 2: Effect on mean dispersion as cooperation increases



In Figure 1, each line represents the percentage of the
population that is able to cooperate, i.e., c = 0.2 means that
20% of the population is able to cooperate and query other
agents, while the rest are not. c varies from 0.2 to 1. k
represents the number of neighbours that each agent is able to
query. k varies from 2 to 10. We see that the social payoff
initially (at k = 2) increases for three values (c = 0.2,
0.4, 0.6), but drops for two values (c = 0.8, 1). How-
ever, surprisingly, as k increases to 4,6,8,10, social payoff
decreases for the first three values (c = 0.2, 0.4, 0.6),
but increases for the latter two (c = 0.8, 1). Figure 2
shows the efficiency of the system, represented by the mean
dispersion. As expected, the addition of cooperation increases
the efficiency of the system with all levels of cooperation. Each
level also exhibits a plateau in terms of the value of k, where
adding more cooperation does not increase the efficiency any
more. Therefore, for the rest of this paper, we only show social
payoff, that fluctuates with addition of more information into
the system.

C. Addition of Lying

The addition of cooperation introduces more information
into the system. However, in a socio-technical system it is
very conceivable that an agent could lie about its intentions to
gain a competitive advantage. In MG, if an agent is able to
successfully mislead its neighbours into choosing the wrong
group, it increases the probability of increasing its own payoff.
Thus, lying in a social context is a very rational act for an MG-
agent. We model what happens when cooperating agents have
a tendency to lie, i.e., if according to its best strategy, the next
chosen action would be 1, upon querying the agent would lie
(and reply with a 0), with a certain probability p.

Fig. 3: Social payoff with a small probability to lie (0.2)

Fig. 4: Social payoff with a higher probability to lie (0.8)

Figures 3 and 4 show the change in social payoff, with each
agent now having the ability to lie. Surprisingly, in Figure 3,
almost all values of k result in the social payoff being above
800, whereas without lying (in Figure 1), only three manage
to reach the 800 mark. In Figure 4 shows an initial rise, with
a subsequent fall. The fall is explained by the fact that when
each agent is lying with a probability of 0.8, the amount of
correct information in the system is actually falling quite low.

D. Heterogeneous Population

It is slightly unrealistic to have a population of agents
that all lie with the same probability. Now, we model a more
heterogeneous population of agents, i.e., a situation where the
presence of lying is not uniform, rather each cooperating agent
has a p drawn from a gaussian distribution. This adds more
realism to the multi-agent population.

Figure 5 shows the fluctuation in social payoff when agents
lie with a probability drawn from a Gaussian distribution
centred on 0.5 in order to cover the full range of values from 0
to 1. One very interesting interesting feature in all the figures is
that the optimal value of k changes, not only with increase in
neighbourhood size, but also within percentage of population.
That is, for a given population, change in cooperation (c) and
lying (p) causes the optimal value of k to change.

III. VEHICULAR NETWORKS

The study of the minority game can be related to another
socio-technical system, Vehicular Networks (VN). In VN,
some vehicles, said to be cooperative, are equipped with
embedded sensors and are able to exchange information with
other vehicles, and can be controlled in order to increase
the global traffic safety, and efficiency of the transportation



Fig. 5: Effect on social payoff when agents are heterogeneous

network. The rest of the vehicles are simply operated by drivers
and adopt a very specific driving behaviour. The resulting
system is a complex, mixed-traffic environment where vehicle-
sensors, communication, and driver-behaviour, all contribute
to the dynamics of the system. Such Vehicular Networks are
currently the subject of a lot of research, as the economic
benefit of autonomous and connected vehicles is assessed to
be enormous (worth £51 billion in the UK, by 2030 [17]).

In such Vehicular Networks, an agent can be represented
as an entity encompassing a driver and the vehicle, providing
the agent with behavioural capabilities (the way the driver
drives), as well as with technical capabilities (engine power,
embedded communication devices and sensors). There are two
types of agents: non-cooperative agents and cooperative ones.
The classical approach used to model vehicle dynamics of
non-cooperative agents at a microscopic level, is to use car-
following models (see [18]). The acceleration of a vehicle is
written as a non-linear function of its speed, relative distance
and relative speed to the leading vehicle, as well as behavioural
parameters Θ specific to the drivers (maximum tolerated
acceleration, desired speeds, etc.). This is comparable with the
Minority Game, except that the agent does not have a fixed
number of strategies in mind, but will link its perception to the
decision in a continuous way. Cooperative agents act based on
enhanced perception available via sensors and communication
exchanges. There are different ways of incorporating cooper-
ation at microscopic levels. In this paper we chose the multi-
anticipation [19], [20] approach. Multi-anticipation refers to
the situation where the acceleration of a driver is computed
as a function of multiple leaders and followers, as opposed to
only one leader such as in the traditional approach [21]. Some
results showed that multi-anticipation can help reduce traffic
congestion and remove traffic instabilities [22].

A. Description of Experiments

In our experiments, an agent is distinguished by the
strategy it follows. If cooperative, it follows the multi-
anticipative model, whereas if non-cooperative, it follows the
usual (and well-known) Intelligent Driver car-following Model
(IDM) [21]. Additionally, the MOBIL lane-changing model
overrides the car-following behaviour when a lane change is
judged useful by the agent. Note that any other realistic car-
following or lane-changing model could have been chosen for
this analysis. The agent is characterized by its behavioural
parameters Θ = (Vmax,T,a,b, s0), where Vmax is the desired
speed, T is the desired safety time headway, a is the max-
imum acceleration, b is the comfortable deceleration, s0 is
the minimum net stopped distance from the leader. Those
parameters account for the behaviour of the driver and the
technical capabilities of the vehicle. In our experiments, by
analogy with the MG, we measure the following variable:

Social payoff: Social payoff is defined as the inverse
of the standard deviation of the speeds. It can be seen as
the equivalent of the defined social payoff in the MG, as a
low standard deviation corresponds to homogeneous speeds of
agents along the network, which relates to equity in terms of
experienced travel times and speed trajectories. High values
of standard deviation correspond to high disturbances in the
traffic stream, meaning that agents can have a very different
experience depending on whether they are caught in congestion
or not. This indicator both represent the efficiency and the
equity in the VN Multi-Agent System.

Variable Value

Population Size 500

Number of Lanes 2

Simulation Period (rounds) 900

TABLE II: Experimental constants

Over all the experiments, the variables shown in Table II
were kept constant. Each datapoint on each graph is a mean
of data from 30 simulations. Agents in the VN vary over their
behavioural parameters. This can be related to the probability
to lie in the Minority Game, which can be seen as a behavioural
parameter. The neighbourhood size is assumed to only take
even numbers: k = 0 corresponds to the classic car-following
law (one leader no follower), k = 2 corresponds to two
leaders and one follower, and so on).

B. Results

As mentioned previously, the multi-anticipative strategy is
a strategy of cooperation that is known to help increase traffic
flow efficiency. Positive outcomes are expected when imple-
menting this strategy. However, we will show that depending
on the percentage of cooperative agents in the fleet, the optimal
number of the neighbourhood size k changes, and that when
introducing variability, an increase of cooperation does not
necessarily mean a system with better social payoff.



1) Homogeneous Population: The behavioural parameters
of the agents were chosen to be identical, and defined as in a
realistic traffic, see [23]. In Figure 6, we see that the optimal
payoff is obtained for k = 4. After that threshold, adding
information does not lead to a better social payoff.

Fig. 6: Vehicular Network: agents are homogeneous

2) Heterogeneous Population: in order to consider some
variability in Vehicular Networks, the distribution of the be-
havioural parameters of agents were drawn, like in the MG,
from a Gaussian distribution centred on the realistic parameters
values defined earlier.

The first consideration resulting from figure 7 is that the
multi-anticipative strategy does not work well when there is
a small proportion of cooperative agents. The strategy with
20% of cooperative agents has a worse performance than the
strategy without multi-anticipation. The strategy with 100% of
cooperative agents shows a relatively stable social payoff for k
varying from 4 to 8. This leads to the following discussion:
adding information can be detrimental when the variability
between the agents is high, or simply when this variability
is realistic. The variability in agent behaviour causes good
strategies, that were analytically proven to perform well, to
perform badly.

The second consideration is the one that was observed in
the Minority Game. There is an optimal k for each given per-
centage of population participating in cooperationc, given the
variability of behaviours and given the implemented strategy
to incorporate cooperation (multi-anticipation in this study).
This can be explained: in a highly physics-dependent system
such as VN, considering too much information can blur the
knowledge of the agents and an agent will end up giving too
much weight to unimportant neighbours, e.g. neighbours which
are too far away from its immediate surroundings.

Fig. 7: Vehicular Network: agents are heterogeneous

As vehicular networks are likely to face low levels of
cooperation at first, those results are of critical importance.
Cooperation strategies that are analytically designed, must be
tested in a non-deterministic framework which takes into ac-
count the variability of agent behaviours. An ideal cooperation
strategy must not display such variations in the global social
payoff.

IV. OBSERVATIONS

Both case-studies showcase the existence of two different
kinds of social variability, that naturally exists amongst agents:

• Variability in Sociability / Cooperation: In a social
MAS, agents may or may not cooperate with other
agents. In the case of cooperation, agents may also
be distributed unevenly (either logically or spatially),
which could affect the number of neighbours they
have access to. A uniform policy/protocol for deriving
information could lead to severely different conclu-
sions being reached by different agents. The more the
amount of information is being considered, the worse
the possible divergence is between the agents.

• Variability in Individual Behaviours: Agents in a
social MAS could also comprise a heterogeneous
population, specially in domains such as vehicular
networks, where agents have multiple behavioural and
technical parameters. Variability could range from the
unintentional (computational limitation) to accidental
(malfunctioning sensor) to the deliberate (lying). This
means that information acquired from neighbouring
agents must be treated with caution, and cross-verified
wherever possible. In this scenario, increasing the



amount of information derived from neighbouring
agents, acts in a counter-productive manner.

V. CONCLUSIONS

This paper presents the results of adding socio-aware
behaviour to two multi-agent systems, the Minority Game and
Vehicular Networks, that were previously known to achieve
efficient outcomes. In previous work on both kinds of multi-
agent systems, work has focused on making the system reach
an efficient outcome, using more computational power or
sophisticated strategies. We show that the presence of socio-
aware behaviour acts as a confounding factor, i.e., adding more
information or computational power does not necessarily result
in a better outcome, for a given strategy of cooperation. In our
experiments, there exists a sweet spot of adding information
where both performance and social outcomes are better. But
adding more information can be detrimental, and this is related
to the human variability in a socio-technical system. Socio-
technical systems of the future must consider social aspects of
sharing information, and the probabilistic nature of trustworthi-
ness. For future work, we will investigate multiple distributions
of socio-aware agents in a population and attempt to quantify
and correlate the impact of these distributions on outcomes
achieved.
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