
Trading perfection for robustness
in extraordinary software

Benoit Baudry (EPI DiverSE)

Journées scientifiques 2015 – June, 19 2015.

1

Extraordinary software

2

Unstable environment

• Users

•  Customization, extensions, add-ons

• Malicious users

•  Complex attack surfaces, sellf-adaptive viruses, weird machines

• Network

•  Concurrent access, bandwidth, server crash, etc.

• Hardware

•  millions of devices, multi-core chips hard to predict, etc.

•  Software environment

•  OS, other applications, updates, etc.

3

Unstable environment

• Users

•  Customization, extensions, add-ons

• Malicious users

•  Complex attack surfaces, sellf-adaptive viruses, weird machines

• Network

•  Concurrent access, bandwidth, server crash, etc.

• Hardware

•  millions of devices, multi-core chips hard to predict, etc.

•  Software environment

•  OS, other applications, updates, etc.

4

Extraordinary software cannot be
perfect in a specific context, it
must be acceptable in many

contexts that cannot be predicted

Trading perfection for robustness

• How to engineer robust systems

•  that are noisy?

•  that are prone to neutral variations?

•  that are extremely diverse?

•  that are not perfect: they must between different
qualities

5

Amazon’s $23,698,655.93 book about
flies

• Algorithmic pricing:

•  Once a day profnath set their price to be 0.9983 times bordeebook’s

price, then bordeebook “noticed” profnath’s change and elevated their
price to 1.270589 times profnath’s higher price.
 6

Engineering robust software systems

• Obtaining and Reasoning About Good Enough Software

•  M. Rinard. 2012.

• Building Robust Systems. An essay.

•  G.J. Sussman. 2007.

• Self-healing: softening precision to avoid brittlenes

•  M. Shaw. 2002.

• Building Diverse Computer Systems.

•  S. Forrest, A. Somayaji, D. Ackley. 1997.

• Design of self-checking software

•  S. Yau and R. Cheung. 1975.

7

Loop perforation

8

source
code

instrumented
binary

Compile
 In memory
 Execution

Instrumentation

running
program

Monitoring and
perforation

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i += 2) { … }

Managing Performance vs. Accuracy Trade-offs With Loop Perforation. S. Sidiroglou-Douskos, Sasa
Misailovic, H. Hoffman, M. Rinard. ESEC-FSE’11.

Loop perforation

• Experiment on the PARSEC benchmark

•  video encoding / decoding

• data mining

• computer vision

• monte-carlo simulation

• Some loops can be perforated with 1.5 speedup
and minimal quality loss

• Approximate correctness reduces computation
time

9

Failure oblivious computing

• Keep the system running after an out-of-bound
access

• When the program attempts to read an out of
bounds array element or use an invalid pointer to
read a memory location, the implementation
manufactures a value

• Successfully prevent crash in the presence of well-
known out-of bound errors

• on 3 different email servers

• Acceptable overhead (due to bound checks)

10
Automatic Runtime Error Repair and Containment via Recovery Shepherding. F. Long, S. Sidiroglou-

Douskos, M. Rinard. PLDI’14.

Adapting binary code for a HW chip

• Energy consumption of hardware chips is very
difficult to predict statically

• Necessary energy is a complex interplay between the app

code and the hardware architecture

• Compilers cannot have generic strategies to optimize energy

cost of binary code

11
Post-compiler Software Optimization for Reducing Energy. E. Schulte, J. Dorn, S. Hardning, S. Forrest,
W. Weimer. ASPLOS’14.

Adapting binary code for a HW chip

12

source
code
 binary

Compile
 Execution

running
program
binary’

Post-compiler Software Optimization for Reducing Energy. E. Schulte, J. Dorn, S. Hardning, S. Forrest,
W. Weimer. ASPLOS’14.

• Energy consumption of hardware chips is very
difficult to predict statically

• Necessary energy is a complex interplay between the app

code and the hardware architecture

• Compilers cannot have generic strategies to optimize energy

cost of binary code

Results

• PARSEC benchmark

• Runtime energy reduction

• between 10% and 80%

• most reductions on CPU-bound programs, rather than IO-

bound

• Transformations impact

•  the structure of control flow

•  removal of unnecessary computation

• branch prediction

13
Post-compiler Software Optimization for Reducing Energy. E. Schulte, J. Dorn, S. Hardning, S. Forrest,
W. Weimer. ASPLOS’14.

Approximate computation

• New hardware approximations

• Voltage overscaling introduces errors in SRAM read/
write in exchange of energy savings

• Bit-width reduction reduces Mantissa bits in exchange
of energy savings

• How can we write programs that exploit these
approximations?

14
FlexJava: Language Support for Safe and Modular Approximate Programming. J.Park, H.
Esmaeilzadeh, X. Zhang, M. Naik, and W. Harris. ESEC-FSE’15.

Approximate computation

• EnerJ and FlexJava extend Java

• Identify what can be approximated

• approximate data stored in the approximate sections of
memory

• approximate operations are computed in the
approximate sections of the CPU

15
FlexJava: Language Support for Safe and Modular Approximate Programming. J.Park, H.
Esmaeilzadeh, X. Zhang, M. Naik, and W. Harris. ESEC-FSE’15.

Approximate computation

16

float computeLuminance (float r, float g,
float b) {!

 float luminance = r * 0.3f + g * 0.6f
+ b * 0.1f;!

 loosen(luminance);!
 return luminance;!

}!

FlexJava: Language Support for Safe and Modular Approximate Programming. J.Park, H.
Esmaeilzadeh, X. Zhang, M. Naik, and W. Harris. ESEC-FSE’15.

Approximate computation

• Evaluation

• programs that tolerate approximate outcomes

• data mining, image recognition, image encoding

• Between 10 and 40% energy savings for
tolerable accuracy loss

17
FlexJava: Language Support for Safe and Modular Approximate Programming. J.Park, H.
Esmaeilzadeh, X. Zhang, M. Naik, and W. Harris. ESEC-FSE’15.

Application-level software diversity

18

P
P1P1P1P1P1P1Pn

automatic
synthesis

program
diversity of
functionally

similar programs

sosie program

19

potential
failures or
breaches

failure diversity

• Given a specification S

• Given a program P
that conforms to S

• A sosie of P is a
variant of P that also
conforms to S

B. Baudry, S. Allier, M. Monperrus. « Tailored source code transformations to synthesize
computationally diverse program variants ». ISSTA, 2014.

sosie programs

• 9 Java libraries

• ~ 150K LoC

• replace/delete/rename
statements

• nb of trials: 298938

• nb of sosie: 28805 (10%)

20
20

don’t compile

don’t pass all test cases

sosies

B. Baudry, S. Allier, M. Monperrus. « Tailored source code transformations to synthesize
computationally diverse program variants ». ISSTA, 2014.

sosie program

public static boolean isAssignable(Class<?>[] classArray,
Class<?>[] toClassArray, final boolean autoboxing) {!
 if (ArrayUtils.isSameLength(classArray, toClassArray) ==
false)  

!{return false;}!
 if (classArray == null) {  

!classArray = ArrayUtils.EMPTY_CLASS_ARRAY;  
 }!
 if (toClassArray == null) {  

!toClassArray = ArrayUtils.EMPTY_CLASS_ARRAY;  
 }!
 for (int i = 0; i < classArray.length; i++) {!
 if (isAssignable(classArray[i], toClassArray[i],
autoboxing) == false) {!
 return false;!
 ! }}!
 return true;!
}! 21

Netflix’s simian army

•  Induce failure regularly

•  break production code to check the system’s ability to react

• Chaos monkey

•  "to randomly shoot down instances and chew through cables"

•  Latency monkey

•  artificial delay in RESTful clients

• Chaos Gorilla

•  simulate shut down of an entire region

• Open source

•  https://github.com/Netflix/SimianArmy

22

Conclusion

• Different techniques for robust ordinary software

• unsound repair; accuracy / energy trade-off; diversity
injection; fault injection

• The software engineering community develops
new approaches for the construction of robust
applications

•  that is good enough

•  that is safe enough

•  that runs continuously

23

Foundations

•  Obtaining and Reasoning About Good Enough Software

•  M. Rinard. 2012.

•  http://people.csail.mit.edu/rinard/paper/dac12.pdf

•  Building Robust Systems. An essay.

•  G.J. Sussman. 2007.

•  http://groups.csail.mit.edu/mac/users/gjs/essays/robust-systems.pdf

•  Self-healing: softening precision to avoid brittlenes

•  M. Shaw. 2002.

•  http://www.cs.cmu.edu/afs/cs/project/compose/ftp/pdf/shaw-homeostasis-fin.pdf

•  Building Diverse Computer Systems.

•  S. Forrest, A. Somayaji, D. Ackley. 1997.

•  http://iar.cs.unm.edu/~forrest/publications/hotos-97.pdf

•  Design of self-checking software

•  S. Yau and R. Cheung. 1975.

24

References

•  FlexJava: Language Support for Safe and Modular Approximate Programming

•  J.Park. 2015

•  Multi-tier diversfication in Web-based software applications

•  S. Allier. 2015

•  https://hal.archives-ouvertes.fr/hal-01089268/document

•  Tailored Source Code Transformations to Synthesize Computationally Diverse Program Variants

•  B. Baudry. 2014

•  https://hal.archives-ouvertes.fr/file/index/docid/938855/filename/sosies.pdf

•  Post-compiler Software Optimization for Reducing Energy

•  E. Schulte. 2014.

•  http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.434.8820&rep=rep1&type=pdf

•  Automatic Runtime Error Repair and Containment via Recovery Shepherding

•  F. long. 2014.

•  http://people.csail.mit.edu/fanl/papers/rcv-pldi14.pdf

•  Managing Performance vs. Accuracy Trade-offs With Loop Perforation

•  S. Sidiroglou. 2011.

•  http://people.csail.mit.edu/misailo/papers/fse2011.pdf

•  Netflix’s Simian army

•  http://techblog.netflix.com/2011/07/netflix-simian-army.html

25

