Injecting Diversity Into Running Software Systems

Vivek Nallur
Trinity College Dublin

16-May-2014
Effects of Monoculture

Figure: Phytophthora infestans
EVEN IN THE SOFTWARE WORLD

Slammer attacked *only* one combination: Win2k + MSSQL
What’s this about?

EVEN IN THE SOFTWARE WORLD

- ~75k hosts in 30 mins!
Fundamental Premise

1. Diversity is not just a *good-to-have*, but *essential*
2. Robustness is a quality attribute that we would like our systems to have
3. Robustness can be increased by injecting Diversity
DIVERSIFY - FET FP7 Project

Partners Investigating Diversification at Various Levels

1. Inria (France)
2. Sintef (Norway)
3. Trinity College Dublin (Ireland)
4. Université de Rennes 1 (France)
Genetic Diversity

1. Not necessarily vastly different, but just different *enough*
2. An algorithm is the genetic heart of a software system
3. Algorithm diversification is a good candidate for genetic diversification
Algorithm Diversification

1. There exists natural diversity amongst algorithms

2. In any domain, there are multiple algorithms that do the same thing, better, faster, etc.

3. We use *load-balancing* as our domain, for now
Load Balancing

1. Fundamental Idea: Distribute incoming traffic amongst pool of machines, such that two goals are satisfied:
 1.1 Response time is minimized
 1.2 Failure rate is minimized
3. Each makes assumptions about the nature of traffic being encountered
1. Traffic depends on type of content:
 1.1 Static web-pages, like wikipedia, blogs, articles, etc.
 1.2 Dynamic web-pages, like weather, traffic, news, youtube, etc.
 1.3 Sticky (personalized) like facebook, twitter, etc.

2. The algorithms mentioned previously, improve response times for these workloads

3. Specialist algorithms for specialist patterns
Patterns, Noise, etc.

1. In a DDoS attack, traffic pattern is random
2. Failure-rate rather than response time becomes more important
3. Generalist algorithm for all patterns of workload, doesn’t exist
Change Algorithms

1. Currently, sysadmins have to consider their workloads and choose one algorithm
2. When pattern of traffic changes, or website gets hit by a DDoS attack, the prevailing algorithm’s assumptions are invalid
3. What if we modify the algorithm when the traffic pattern changes?
4. Can we do better than random?
Adaptation via Algorithm Swapping

1. Modify load-balancer to work on a *pool of algorithms*, instead of *one*

2. Cycle through the pool, every *n* seconds

3. In the worst case:
 3.1 Algorithm completely unsuited for traffic pattern \Rightarrow high failure
 3.2 But it lasts only for *n* seconds!
Creating a Pool of Algorithms

1. Choose haproxy as an industrial-strength load-balancer
2. Use all the algorithms implemented by haproxy
3. Number of combinations: $7C_2$ — $7C_7$
4. Potential behavioural diversity is very high!
DOES THIS WORK?

1. We want to decrease failure-rate
2. So measure dropped requests
3. In the presence of a cloud of VMs hitting the load-balancer
4. Pools defined as:
 4.1 7C_1 — class A — baseline
 4.2 7C_3 — class B
 4.3 7C_4 — class C
 4.4 7C_7 — class D
Experimental Conditions

1. Workload: 3 Virtual Machines
2. Load-Balancer: 1 haproxy
3. Load-Generators: 13 Virtual Machines

Note:
We want to overwhelm haproxy, not the workload machines
NORMAL PERFORMANCE OF HAPROXY

Figure: Each pool containing one algorithm – all of class A
Diversified Performance of HAProxy

Figure: class B
DIVERSIFIED PERFORMANCE OF HAPROXY

Figure: class C
Diversified Performance of HAProxy

Figure: class D
All together now

Figure: Robustness across pools
Statistical Evidence

<table>
<thead>
<tr>
<th></th>
<th>diff</th>
<th>lwr</th>
<th>upr</th>
<th>p adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>B- A</td>
<td>-20.622</td>
<td>-30.632</td>
<td>-10.612</td>
<td>0.000001</td>
</tr>
<tr>
<td>C- A</td>
<td>-9.329</td>
<td>-19.340</td>
<td>0.681</td>
<td>0.076</td>
</tr>
<tr>
<td>D- A</td>
<td>-22.160</td>
<td>-36.317</td>
<td>-8.004</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table: Significance of long-run differences in failure rate

<table>
<thead>
<tr>
<th></th>
<th>diff</th>
<th>lwr</th>
<th>upr</th>
<th>p adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>B- A</td>
<td>-1,073.833</td>
<td>-2,638.443</td>
<td>490.777</td>
<td>0.276</td>
</tr>
<tr>
<td>C- A</td>
<td>50.333</td>
<td>-1,514.277</td>
<td>1,614.943</td>
<td>1.000</td>
</tr>
<tr>
<td>D- A</td>
<td>-1,523</td>
<td>-3,735.693</td>
<td>689.693</td>
<td>0.273</td>
</tr>
</tbody>
</table>

Table: No significance of long-run differences in median response time
Experiment Validity

1. Sample size: 6 samples per pool
2. Anova & Tukey test pass for statistical significance
3. Failure-rate improved; Response time same!!
4. Only static workload
5. Dynamic & Sticky workloads missing
DIVERSITY ISN‘T ALL GREAT :(

[Graphs showing box plots for different request drop percentages across various load balancing methods: hdrHost, leastconn, roundrobin, static-rr, uri. The graphs compare leastconn-source-uri-rdpcookie with roundrobin-leastconn-uri-hdrHost, indicating differences in request drop rates.]
So, it’s still random choice

1. Not exactly. We can measure inter-algorithm distance
2. Sort of.
3. We can use Normalized Compression Distance
4. Used in many free-text domains

\[NCD_Z(x, y) = \frac{\max K(x|y), K(y|x)}{\max K(x), K(y)} \]
Figure: Clustering on code of algorithm implementation
WHAT'S THIS ABOUT?

USING NCD

1. Not all pools are created equal
2. Selecting from pool, might be better than random choice
3. Pre-compute pool diversity?
What’s the net result?

1. No definitive answers
2. But promising experiments
3. Obviously more required
THAT’S ALL, FOLKS!

Questions, Suggestions...