Modelling Adaptation Policies as
Domain-Specific Constraints

Hui Song, Xiaodong Zhang, Nicolas Ferry,
Franck Chauvel, Arnor Solberg, Gang Huang

SINTEF ICT, Oslo, Norway
Peking University, Beijing, China

— NS 777
=) V%A‘i?‘/ 5;::3\] t’_z//,,f:/ 4
- MODAC|ouds BroRer@Cloud

SINTEF

VM Placement in Cloud

vm i applications m m m

=
L ;,"
8/
|
$ &
e

SINTEF

Thinking in Models

frequent

Y

SINTEF

1

| comm

backup
mysq| mysq|
vml vm?2

17

web

1

vm3

!

not close

pm2

Resource limitation
Consolidation
Backup split
Frequent close

Migration cost

Developing the Adaptation Behaviour

backup frequent
mysq| mysg comm web — Concentrate VMs to fewer pms to save energy

—— — —— — but only when the sum of VMs’ memory

does not exceed the pms’ memory

vml vm?2 vm3 , .
core=8 core=8 core=4 - DOﬂ t move Very b|g VMS
mem=6 mem=8 mem=4 | _ Separate backup VMs to different PMs

SN S

not close

— Put frequently communicating VMs closer

if backup(vm1,vm2) and vm1l.host = vm2.host,
if vml.mem < vm2.mem or (frqt(vml, vm2) and not vml.mem >>vm2.mem)
iIf vm2.mem < pm2.available and vm1.core <= pm2.core

move vml to pm2 _ _ _ _ _
else If written in Action-based adaptation policy

SINTEF ,

Modelling Adaptation Policies

Challenges
Many interrelating concerns

Actions policies (if-then-else or event-condition-action)?
Explosion of branches
Hard to introduce new concerns
Abstraction gap between concerns and actions

New way of modeling!
Just write down the constraints themselves
"what the system should be like" rather than "how to achieve that”

Potential conflicts?
Soft constraints with different weights

SINTEF

Modeling Adaptation Policies as
Constraints

Memory Limitation
context PM inv:

HPM H App }
T mem : EBiglnteger T name : EString hos_tlng->colIect(mem)->sum() <=mem
T name : EString (priority: mandatory)
T core : EBiglnteger 1
a .
R S Consolidation
nealr piq deplay apps inv: i i —
b . hosting 1 context PM inv: self.hosting->size() =0
pmE 0.5 BvM 0.+ (priority: low)
T name : EString backup
fat T mem : EBiglnteger Backup split:
0+ T core: EBigﬂInteger context VM inv:
b bgcl_<up->_foral|(e|e.plc 1= self.plc)
i l (priority: high)
H System

Migration cost:
vml.plc=pml (priority: 8)
Vm3.plc=pm2 (priority: 4)

SINTEF

Constraint Modelling Language and Editor

5 Project 22— O |=| vmplc.constraint &3 = O
- 9= class WVM{
Evmpla?erfl;zrllt 18 id S5tring name Integer mem
11 config Integer core : {domain = Set{1,2,4,8} resistance = 20}
» H App 12 config PM plc : { resistance=(mem*12) }
b = Ecore 13= WM[*] backup : {derived
b = Import 14 W.allInstances()-=selectiv|ve=self and v.app.name = self.app.name) }
» H PM 15 ref VM[*] frot opposite frgt
» E System 16 ref App‘ﬂpp opposite degh_:ay
17 constraint (hard) CorelLimit: self.core <= self.plc.core
v HVM 18 constraint (priority = 88) BackupSplit: backup->forAll{ele.plc < self.plc)
> Trapp : App 19= constraint (priority = 28) FrequentNear :
> Etbackup : VM 28 frot-=fordll{vIv.plc. near-=includes(self.plc)) }
» T core : EBigintec 21 Cl‘“f‘ PM{)
» iz Ecore 22 id S5tring name
23 Integer mem Integer core ref PM[*] near
b oxfrgt: VM 24 ref VM[*] hosting:{derived WM.allInstances(}-=select(plc=selfl}
» T mem : EBiginte 25 constroint{hard) MemLimit: hosting-»collect(ele.mem)-=suml) < mem }
» T name : EString 26— class App{
— AP ._a 27 String name

https://bitbucket.org/huis/constraintml
SINTEF .

Adaptation Based on Constraints

. main contents in this pap

I:Ianguage:I | transformati

e —

adaptation
model
- concepts
- constraints

domain experts

SINTEF

CsP
(SMT)

Satisfactory Modulo Th

PM
¥ mem:; EBigInteger

eory *
e

T name : EString

Memory Limitation T, g o
context PM inv: i]
hosting->collect(mem)->sum() <= mem

 —
b
/

VM : {vmy, vms,vms}, PM: {pmq,pmo}, int, boolean
ve: VM — int, pc: PM — int, vmem : VM — int, pmem : PM — int
plc : VM — PM, frgt : VM x VM — bool, near : PM x PM — bool

Yom, pm. (ple(vm) = pm = ve(vm) < pe(pm))

Vpm. (Z ite(plc(vm) = pm,vmem(vm),0)) < pmem(pm))
vmeV M

Yom,vm'. (frgt(vm, vm") = near(plc(vm), ple(vm”))) . Vpm. (near(pm, pm))
ve(vmy) = 8, vmem(vmy) = 6, plc(vms) = pmy, frgt(vms, vms)...

backup frequent
comm

not close

Transformation

B OCL expressions
B Principle #1: values, elements and most operations keep the same
m Principle #2: replace property reference by function call
m vm1.plc = pm1 => plc(vm,) = pm,
m vm1.frat = {frqt(vm, vm{)? vmy: L, frqt(vm,, vmy)? vm,: L ---}
m Principle #3: properties that do not change will be resolved
m vm1.backup->forall(e|e.plc!=vm1.plc) => plc(vm,)! = plc(vm,)
B Principle #4: complex operations have simple alternatives

m vm1.frgt.forall(e.x) =>
(frqt(vmy, vmy)? x(vmy): True) & (frqt(vmy, vmy)? x(vmy):True & ...

B A new set of partial-evaluation semantic rules on OCL
m "which this slide is too narrow to contain”

SINTEF .

Constraint Solving

VM : {vmy, vme,vms}, PM: {pmy,pms}, int, boolean
ve : VM — int, pe: PM — int, vmem : VM — int, pmem : PM — int

ple : VM — PM, frqt : VM x VM — bool, near : PM x PM — bool
Yom, pm. (ple(vm) = pm = ve(vm) < pe(pm))

Vpm. (Z ite(plc(vm) = pm,vmem(vm),0)) < pmem(pm))

vmeV M

Yom,vm'. (frgt(vm,vm’) = near(ple(vm), ple(vm”))) , Vom. (near(pm, pm))
ve(vmy) = 8, vmem(vmy) = 6, ple(vmsa) = pmy, frgt(vms, vms)...

Constraint Solver: Is there an interpretation to each function, to
satisfy all the constraints?
Yes: Return the interpretation,
No: Ignore some "weakest" constraints, and return an interpretation to
satisfy all the others — An optimisation problem

Solver: Z3 by Microsoft research

Song, H., S. Barrett, A. Clarke, and S. Clarke (2013). Self-adaptation with End-User Preferences: Using Run- Zg

Time Models and Constraint Solving. In: Model-Driven Engineering Languages and Systems. pp.555-571.

SINTEF "

models@runtime

backup frequent backup frequent
comm comm
mysq| mysq| web mysq| mysq| web
vml vm?2 vma3 vml vm?2 vma3
core=8 core=8 core=4 core=4 core=8 core=4
mem=6 mem=8 mem=4 ‘/\ mem=6 mem=8 mem=4
pml ! ! pml pm2
core=8 core=8 core=4
mem=20 not close] mem=20 not close mem=10

instance
model'

instance
model

Nicolas Ferry, Hui Song, Alessandro Rossini, Franck Chauvel and Arnor Solberg, CloudMF: Applying MDE to
Tame the Complexity of Managing Multi-Cloud Applications, UCC 2014, to appear

SINTEF "

A Demo

Focus on the adaptation effect
Ignore SMT generation and models@runtime

SINTEF

13

Performance

Acceptable for medium sized private clouds
60s: 100 vm, 10 pm, 600 properties, 10 changes (as in paper)
60s: 500 vm, 50pm, 3000 properties, 10 changes (now)

Why
Powerful new constraint solver
Usually simple constraints
A big portion of fixed properties | . l I
Partial evaluation!) 5

63 127
|

31
|
-

Adaptation time (s)

Hll -
HIOA
A

~ -
H
™ - =]
L

I (L T (L (L
#1 #2 #3 #4 #5 #6

SINTEF y

A Short Summary

« SMT represention of architectural models « SMT solving with soft constraints
* OCL to SMT transformation, with partial » Conflicting constraints
evaluation = j--o-smoee-oeeoo-oooooo « Adaptation costs

main contents in this paper

Danguage] | transformation |
]

adaptation
model

- concepts

- constraints

m@rt

Declarative constraint-
based modelling
A text-based DSL withy, g ens w

a powerful editor

SINTEF

Application

Directly used for adaptation
Constraints from cloud domain experts
Searching for better deployment that fits the context better

Assessment of adaptation cost
"Is a diverse system easier to be adapted for changing contexts"?
"Dry-run" the solving process on controlled models

The total weight of broken constraints is the cost of performing the
adaptation

SINTEF "

Thank You!

Questions, Comments, Suggestions?

g
O
SINTEF ICT QL0
hui.song@ sintef.no

https://github.com/songhui/cspadapt

Q

{‘}or?@Daints
Ty O
aih

e

www.shutterstock.com - 184909211

SINTEF

17

