Searching Architecture Models for
Proactive Software Diversification

Benoit Baudry

joint work with J. Bourcier, F. Fouquet, S. Allier, M.
Monperrus

SEVENTH FRAMEWORK i
PROGRAMME

—arly so

tware monocultures

Software monoculture

* Massive monoculture at the bottom of the
software stack

* operating system, web servers -

* Emerged with the increase
of the software market

frameworks

* personnal computers

 Internet

Software monoculture — PC

=" Microsoft

Software monoculture — web servers

o

Microsoft: |

Windows
Server System

ORACLE

™

Software monoculture — routers

NI
CISCO.

Risks very well known

» Single point of failure
 Cascading effects

* error / virus propagation
- BOBE

* blow one, blow everything

* Massive reuse of attack
Vectors

PAUL WATSON

Inside Risks ‘ Mark Stamp

Risks of Monoculture

he W32/Blaster worm burst onto the Internet

scene in August of 2003. By exploiting a

buffer overflow in Windows, the worm was

able to infect more than 1.4 million systems
worldwide in less than a month. More diversity in the
OS market would have limited the number of suscep-
tible systems, thereby reducing the level of infection.
An analogy with biological systems is irresistible.

‘When a disease strikes a biological system, a sig-
nificant percentage of the affected population will
survive, largely due to its genetic diversity. This holds
true even for previously unknown diseases. By anal-
ogy, diverse computing systems should weather cyber
attacks better than systems that tend toward mono-
culture. But how valid is the analogy? It could be
argued that the case for computing diversity is even
stronger than the case for biological diversity. In bio-
logical systems, attackers find their targets at random,
while in computing systems, monoculture creates
more incentive for attack because the results will be
all the more spectacular. On the other hand, it might
be argued that cyber-monoculture has arisen via nat-
ural selection—providers with the best security prod-
ucts have survived to dominate the market. Given
the dismal state of computer security today, this
argument is not particularly persuasive.

Although cyber-diversity evidently provides secu-
rity benefits, why do we live in an era of relative com-
puting monoculture? The first-to-market advantage
and the ready availability of support for popular prod-
ucts are examples of incentives that work against
diversity. The net result is a “tragedy of the (security)
commons” phenomenon—the security of the Internet
as a whole could benefit from increased diversity, but
individuals have incentives for monoculture.

It is unclear how proposals aimed at improving com-
puting security might affect cyber-diversity. For exam-
ple, increased liability for software providers is often
suggested as a market-oriented approach to improved
security. However, such an approach might favor those
with the deepest pockets, leading to less diversity.

Although some cyber-diversity is good, is more
diversity better? Virus writers in particular have used
diversity to their advantage; polymorphic viruses are
currently in vogue. Such viruses are generally
encrypted with a weak cipher, using a new key
cach time the virus propagates, thus confounding

120 March 2004/Vol. 47, No.3 COMMUNICATIONS OF THE ACM

signature-based detection. However, because the
decryption routine cannot be encrypted, detection is
still possible. Virus writers are on the verge of
unleashing so-called metamorphic viruses, where the
body of the virus itself changes each time it propa-
gates. This results in viruses that are functionally
equivalent, with each instance of the virus containing
distinct software. Detection of metamorphic viruses
will be extremely challenging.

Is there defensive value in software diversity of the
metamorphic type? Suppose we produce a piece of
software that contains a common vulnerability, say, a
buffer overflow. If we simply clone the software—as
is standard practice—each copy will contain an iden-
tical vulnerability, and hence an identical attack will
succeed against each clone. Instead, suppose we cre-
ate metamorphic instances, where all instances are
functionally equivalent, but each contains signifi-
cantly different code. Even if each instance still con-
tains the buffer overflow, an attacker will probably
need to craft multiple attacks for multiple instances.
The damage inflicted by any individual attack would
thereby be reduced and the complexity of a large-
scale attack would be correspondingly increased. Fur-
thermore, a targeted attack on any one instance
would be at least as difficult as in the cloning case.

Common protocols and standards are necessary in
order for networked communication to succeed and,
clearly, diversity cannot be applied to such areas of
commonality. For example, diversity cannot help pre-
vent a protocol-level attack such as TCP SYN flooding.
But diversity can help mitigate implementation-level
attacks, such as exploiting buffer overflows. As with
many security-related issues, quantifying the potential
benefits of diversity is challenging. In addition, meta-
morphic diversity raises significant questions regarding
software development, performance, and maintenance.
In spite of these limitations and concerns, there is con-
siderable interest in cyber-diversity, both within the
research community and in industry; for an example of
the former, see www.newswise.com/articles/view/502136/
and for examples of the latter, see the Cloakware.com
Web site or Microsoft’s discussion of individualization in
the Windows Media Rights Manager.

MARK STAMP (stamp@ecs.sjsu.edu), an assistant professor of computer
science at San Jose State University, recently spent owo years working on
diverse software for MediaSnap, Inc.

Systems software diversification

Software diversity

* In operating systems
« Seminal papers in the 1990’s

* Fred Cohen 1993 « Operating system protection
through program evolution »

« Stephanie Forrest 1997 « Building Diverse Computer
Systems »

» For security purposes

* mitigate code injection, buffer overflows

INnstruction set randomization

Encryption Key Decryption Key

o

| | |
| | | >

Compile Load In memory Execution

10
Randomized instruction set emulation. EG Barrantes, DH Ackley, S Forrest, D Stefanovi¢c. ACM TISSEC, 8 (1), 3-40

Software diversity

» Address space layout randomization
» randomize binary addresses at load time

* a program’s address space is different on each
machine

* Deployed In all mainstream operating systems

» Effective against buffer overflows

11

New software monocultures

Software monoculture today

- Continues growing in upper levels of the software
stack

* ibraries, frameworks, IDEs, CMS, search engine, browser,
etc.

» Pushed by GOOD reasons ¢ m
* software engineering practices: _
- HA

modularity and reuse
« compatibility and interoperability
* maintenance and evolution costs reduction

 economical motivations .

The case of Wordpress

 CMS monoculture

* March 2014: more than 20% of
500000 top site use Wordpress

* Plugins monoculture

« 64% use the Akismet plugin

« 23% use Jetpack, known to have an
SQL injection vulnerability

“Multi-tier diversification in Internet-based software applications”. Simon Allier, Olivier Barais, Benoit Baudry, Johann Bourcier,
Erwan Daubert, Franck Fleurey, Martin Monperrus, Hui Song, Maxime Tricoire. To appear in IEEE Software, Jan 2015

% of WordPress websites usage

The case of Wordpress

70

60

50

0

100 150 200 250 300 350 400

WordPress plugin

110000 web sites
mean of 5 plugins per site

15

% of websites usage

JS libraries

40

35

30

25

20

110000 web sites

30

40

50

JavaScript library

60

70

80

90

100

16

17

Cryptographic protocols

| Brad Fitzpatrick X +LF
bradfitz

So glad that all my public-facing SSL servers
are using ‘golang's crypto/tls package, and
not OpenSSL. #Heartbleed

18
source: https://t37.net/4-lessons-every-startup-should-learn-from-the-heartbleed-catastrophe.html

Cryptographic protocols

2. Monoculture kills

66% of the servers connected to the Internet use OpenSSL to provide https.
This, like every kind of monoculture, is a real problem for many reasons.

Monoculture is a danger for security. It means security researchers will all
focus on the same target instead of working on many. This was true in the
late 80's and 90's when MS DOS and Windows were sharing 95% of the
desktop market share: viruses coders were only targeting the platforms as
they were easy to exploit, and most people were using them. It's still true
today with Wordpress powering 12% of the sites worldwide, and using third
party poorly coded if not willingly infected themes and plugins.

Monoculture is a danger for innovation. Innovation comes from diversity
and the will to explore new, undiscovered paths. On the contrary,
monoculture brings the “everyone does it this way, so we're doing it too”
syndrome. | remember, 10 years ago when we were developing Web sites and
applications for Internet Explorer 6 only. It was a real pain as alternate
browsers were supporting new feature faster. For the record, Internet
Explorer 6 was discontinued only 2 years ago.

19

Social networks

Is the social networking monoculture ready
to crumble?

Summary: The emergence of new social networking services such as Pinterest and a growing
base of disgruntled 3rd party developers for the leading services shows that changes in the
social networking industry are far from over. It's also causing a rethinking of the business
models and partner ecosystems of what's become the old guard, Facebook and Twitter.

K

20
source: http://www.zdnet.com/is-the-social-networking-monoculture-ready-to-crumble-7000003329

By Dion Hinchcliffe for Enterprise Web 2.0 | August 28, 2012 -- 22:29 GMT (15:29 PDT)
3 Follow @dhinchcliffe Get the ZDNet Insights newsletter now

eeeeeeeee

Software development

Garann Means asks: are geek stereotypes and the
prevailing developer monoculture putting the web
industry at risk? >

2
source: http://www.creativeblog.com/netmag/bacon-bad-you-dangers-dev-monoculture-21410684

Alternatives are emerging

Web servers

Microsoft: |

Windows
Server System

&

™

NGIN

http server

Cloud platforms

amazon

web serwceswn

openstack” .

Java virtual machines

open)DK X

e ¢ B s

bl i S Rl bl M B W A R A e v . _-u u

Huge reservoir of functionally similar S
software solutions =

Fr NS LA s o V) EwAE

i

REEIS R

8 4 :
,.L'ﬂ L RN NIRRT . h.ll‘!“"mw‘ "“' AT
..,“.;M & AR e M Ag
- -mm: gel Jd - SEREEp 'Mi*u By | ;
¢ - vmwz W oo B - W~ %

&wtnﬁ"“-‘ﬂ o M]M‘ m
Tbﬂ; e A u.nyimcm e *uau
A o . _&3.! ,a; “w‘
' ‘(e&u'uvv MJ A .

= mw
v w\;mwmm ey i e el S e s
Eh gl ujwivhm N, LAANE e RO W L

;f-wo&»~f L8 g o WM‘M~M s
M i e o0 RS, = r—inc et o oard ede - @

B it ~ el IO -6 O~ - 554
: ‘T!’WJ{ CROT 60\«“ 4

Yet, software systems remain highly
homogeneous

Take-away

» Software monocultures exist
* at a very large scale
* In application level code
« Software diversity exists
* machine-code level
» Alternative software solutions emerge
* must be exploited

* Next challenge: diversify applications in a
proactive/automatic way

29

Our claim

MDE and SBSE
can spur

aplication software diversity
radiation

Web app example

! [Mdms - Diversify x
C' [} cloud.diversify-project.eu ks
i/

| Options

'e page esten | anglais + | Voulez-vous la traduire ? | Non | | Traduire |

Software Diversity & EZD

As part of our project, we synthesize and observe
multiple forms of software diversity. For example, we
have vizualized the diversity in commit flows among
projects hosted in Github using circos.

-

Diversify Video et

This Video demonstrate the MDMS use case for the
DIVERSIFY project.

The goal is to showcase that using automatically
diversified source code in various environments does
not impact the external visible behavior of the system.

Experimental app &

This editor of MD posts is developed in the context of the
DIVERSIFY project, which explores the synthetic
diversification of web servers.

31

Server side software stack

Redis DB

RingodS
Rhino

AN

Server side deployment

E Internet 5

http request

Nginx load balancer

config 0 config 0 config 0

H

AN

config O

Monoculture deployment of MDMS

33

Server side deployment

E Internet i\,

http request

diverse
OSs

d IVGI’SG \-J S Nginx load balancer
i nte rp re-te rS config 1 config 2 config 3

\ /
R O
| 202020000000 % % %% ERKHAHAIHK

JVMs diverse
clouds..

Multi-diversified deployment of MDMS

Where models can support diversification

E Internet 3

http request

|| T I trade-off

Models prowoe abstractlons ween
f : : ersity and
to formalize the space for . criteria

formal diversification and sustain —
dependen , ,
— software diversity, system-
WIsSe, over time
[EE==miem——ne—nl

Multi-diversified deployment of MDMS

35

Searching for diverse architectures

* A reservoir of software diversity
* natural diversity of OS or JVM
« automatic diversification of the JS interpreter
* Automatic reasoning on the architecture
- find valid, diverse deployment architectures
- Actual deployment of a diverse architecture

* deploy the solution on a distributed setting

36

Synthesizing a diversity reservolr

e SOSsies

* a Sosie program Is a variant of a program that passes
the same test suite

» Synthesized thousands of sosies

* deleting or adding / replacing statements by others from
the same program

» Synthesized 843 RingodS sosies

« that can be executed from the MDMS client

“Tailored Source Code Transformations to Synthesize Computationally Diverse Program Variants”.
Benoit Baudry Simon Allier, Martin Monperrus. ISSTA 2014

Architecture modeling

» Component-based software engineering

-

_

Load Balancere®

Node 1

~

/

JVM = HotSp&

[JVM = HotSpQ

C MdMS

_ Node 4 Y.

Architecture modeling

-

_

Node 1

~

Load Balancere®

/

JVM = HotSp}

JVM\= JRoc@

[JVM = OpendDH

‘%) MdMS

]

_ Node 4

-

izvo ree

Architecture modeling

- Component
- Code unit
« |/O ports

 Channel

« Communication between
components

« Node

: ArduinoSer.

« Execution platform for components P

- Group

« Group nodes together to have a
consistent model

izvo ree

Kevoree for distributed deployment

* AN Open-source
framework

» A structural model that
represents the
distributed running
system and that can be
synchronized in both
directions on-demand

On-
demand
synchron
zation

ievo ree

Kevoree for distributed deployment

B S Mt A L e A

I 4
= [
........

A

- e — b——

Synthesizing software architecture

* Given a reservoir of diverse software
components

 natural diversity of VMs, JVMs, machines
« automatic diversity: sosie RingodS
*\WWhat is the the good trade-off between
e capacity
* cost

« diversity: need to estimate ‘good’ diversity

43

Polymer Framework

» Polymer

* Open-source framework to enable runtime usage of SBSE
techniques

* Works to make SSBSE usable @Runtime

» Define dedicated domains, actions, fithess

* Find heuristics to converge faster to acceptable tradeoffs

Polymer

* Leverage the KMF framework to reason on domain
models

* Mutation, Fithess, and crossover are defined as
model transformation

 Multi-objectives
« Extensible framework

* Define your own model, your own operators, your own
fitnesses, define your own search algorithm

mplemented algorithms : Genetic (MOEAd,
NSGAIl), Greedy (progression each steps), Local
—ull Search

Concrete domain example

O..* | nodes
(' Node
id : EString
| T _JWMESting
\§ J

O..* | components

Component

Cloud

0..* ¥ nodes

Node

id:EString
JVM: EString

componentsl/ 0..*

Component

name: EString

MDMS

sosie: EString

—

LoadBalancer

Polymer usage

GeneticEngine<Cloud> engine = new GeneticEngine<Cloud>(); The model to use

engine.setAlgorithm(GeneticAlgorithm.EpsilonCrowdingNSGll); The Search
algorithm to use

engine.addOperator(new AddNodeMutator());

The mutation operators
engine.addOperator(new RemoveNodeMutator());

to use
engine.addOperator(new AddComponentMutator());
engine.addFitnessFuntion(new CloudCostFitness()); The fithesses
engine.addFitnessFuntion(new CloudCapacityFitness()); tO use
engine.addFitnessFuntion(new CloudDiversityFitness));
engine.setMaxGeneration(300); Fix search parameters

engine.run(); Run

Defining Mutation

Usage of model elements

cloud.getNodes().add(new Nodes().setName("node_5555"));

Defining the cost Fitness

function evaluate(cloud : CloudModel) : Double {

return sum(cloud.getNodes.price);

N

} Usage of model elements

Defining the capacity Fitness

function evaluate(cloud : CloudModel) : Double {

return sum(cloud.getNodes.capacity);

N

} Usage of model elements

Defining the

Diversity Fithess

function evaluate(cloud : CloudModel) : Double {

return extinctionSequence(cloud);

}

R

Usage of model elements

This function computes a value corresponding to the
extinction sequence of the cloud given in parameters

Diversity fithess: robustness

Robustness: how fast extinctions lead to collapse
of other species (secondary extinctions)

100~-— — —

60
40

207

|

|

o
ll Memmott et al. 2004

N

|

|

Percentage of remaining species

I I I | |
0 20 40 60 80 100
Percentage of plant species deleted:
extinction sequence

—xtinction sequence algorithm

1. While the application still provides a service

1. We select a specific component A
Such as a specific sosies of MAMS

2. We Kill all the instances of A

3. We evaluate the capacity of the system to serve user
request and incrementally draw a curve

2. We measure the area behind the curve to
determine the robustness of the system

Robustness Measurement

» Quantifies the resistance of the graph to
random perturbations

* Reports the change in apps alive as the
platforms are individually killed

* Robust networks allow the maximum amount
of apps to remain alive in the face of systemic
platform death

55

Conclusion

» Software monocultures grow at all levels in
software stacks

» for good engineering and business reasons

* MDE and SBSE can be key enablers to balance
this natural phenomenon

* abstractions that characterize the diverse components

* search-based techniques that sustain diversity

56

References

 « Multi-tier diversification in Internet-based software applications ». Simon
Allier, Olivier Barais, Benoit Baudry, Johann Bourcier, Erwan Daubert,
Franck Fleurey, Martin Monperrus, Hui Song, Maxime Tricoire. To appear in
IEEE Software, Jan 2015

* « Tallored source code transformations to synthesize computationally
diverse program variants ». Benoit Baudry, Simon Allier, and Martin
Monperrus. ISSTA 2014,

 « Optimizing Multi-Objective Evolutionary Algorithms to enable Quality-
Aware Software Provisioning ». Donia El Kateb, Francois Fouquet, Johann
Bourcier, Yves Le Traon. QSIC 2014

« http://kevoree.org/polymer/

« hitp://Kevoree.org/
« https://qgithub.com/INRIA/spoon
« http://diversify-project.eu/

57

