
Searching Architecture Models for
Proactive Software Diversification

Benoit Baudry

joint work with J. Bourcier, F. Fouquet, S. Allier, M.
Monperrus

1

Early software monocultures

2

Software monoculture

• Massive monoculture at the bottom of the
software stack

• operating system, web servers

• Emerged with the increase "
of the software market

• personnal computers

•  Internet

3

virtual machines
operating system

frameworks

HAL

libraries
applications

Software monoculture – PC

4

Software monoculture – web servers

5

Software monoculture – routers

6

Risks very well known

• Single point of failure

• Cascading effects

• error / virus propagation

• BOBE

• blow one, blow everything

• Massive reuse of attack
vectors

7

120 March 2004/Vol. 47, No.3 COMMUNICATIONS OF THE ACM

The W32/Blaster worm burst onto the Internet
scene in August of 2003. By exploiting a
buffer overflow in Windows, the worm was
able to infect more than 1.4 million systems

worldwide in less than a month. More diversity in the
OS market would have limited the number of suscep-
tible systems, thereby reducing the level of infection.
An analogy with biological systems is irresistible.

When a disease strikes a biological system, a sig-
nificant percentage of the affected population will
survive, largely due to its genetic diversity. This holds
true even for previously unknown diseases. By anal-
ogy, diverse computing systems should weather cyber
attacks better than systems that tend toward mono-
culture. But how valid is the analogy? It could be
argued that the case for computing diversity is even
stronger than the case for biological diversity. In bio-
logical systems, attackers find their targets at random,
while in computing systems, monoculture creates
more incentive for attack because the results will be
all the more spectacular. On the other hand, it might
be argued that cyber-monoculture has arisen via nat-
ural selection—providers with the best security prod-
ucts have survived to dominate the market. Given
the dismal state of computer security today, this
argument is not particularly persuasive.

Although cyber-diversity evidently provides secu-
rity benefits, why do we live in an era of relative com-
puting monoculture? The first-to-market advantage
and the ready availability of support for popular prod-
ucts are examples of incentives that work against
diversity. The net result is a “tragedy of the (security)
commons” phenomenon—the security of the Internet
as a whole could benefit from increased diversity, but
individuals have incentives for monoculture.

It is unclear how proposals aimed at improving com-
puting security might affect cyber-diversity. For exam-
ple, increased liability for software providers is often
suggested as a market-oriented approach to improved
security. However, such an approach might favor those
with the deepest pockets, leading to less diversity.

Although some cyber-diversity is good, is more
diversity better? Virus writers in particular have used
diversity to their advantage; polymorphic viruses are
currently in vogue. Such viruses are generally
encrypted with a weak cipher, using a new key
each time the virus propagates, thus confounding

signature-based detection. However, because the
decryption routine cannot be encrypted, detection is
still possible. Virus writers are on the verge of
unleashing so-called metamorphic viruses, where the
body of the virus itself changes each time it propa-
gates. This results in viruses that are functionally
equivalent, with each instance of the virus containing
distinct software. Detection of metamorphic viruses
will be extremely challenging.

Is there defensive value in software diversity of the
metamorphic type? Suppose we produce a piece of
software that contains a common vulnerability, say, a
buffer overflow. If we simply clone the software—as
is standard practice—each copy will contain an iden-
tical vulnerability, and hence an identical attack will
succeed against each clone. Instead, suppose we cre-
ate metamorphic instances, where all instances are
functionally equivalent, but each contains signifi-
cantly different code. Even if each instance still con-
tains the buffer overflow, an attacker will probably
need to craft multiple attacks for multiple instances.
The damage inflicted by any individual attack would
thereby be reduced and the complexity of a large-
scale attack would be correspondingly increased. Fur-
thermore, a targeted attack on any one instance
would be at least as difficult as in the cloning case.

Common protocols and standards are necessary in
order for networked communication to succeed and,
clearly, diversity cannot be applied to such areas of
commonality. For example, diversity cannot help pre-
vent a protocol-level attack such as TCP SYN flooding.
But diversity can help mitigate implementation-level
attacks, such as exploiting buffer overflows. As with
many security-related issues, quantifying the potential
benefits of diversity is challenging. In addition, meta-
morphic diversity raises significant questions regarding
software development, performance, and maintenance.
In spite of these limitations and concerns, there is con-
siderable interest in cyber-diversity, both within the
research community and in industry; for an example of
the former, see www.newswise.com/articles/view/502136/
and for examples of the latter, see the Cloakware.com
Web site or Microsoft’s discussion of individualization in
the Windows Media Rights Manager.

Mark Stamp (stamp@cs.sjsu.edu), an assistant professor of computer
science at San Jose State University, recently spent two years working on
diverse software for MediaSnap, Inc.

c

Risks of Monoculture

PA
U

L
W

AT
SO

N

Inside Risks Mark Stamp

Systems software diversification

8

Software diversity

• In operating systems

• Seminal papers in the 1990’s

• Fred Cohen 1993 « Operating system protection
through program evolution »

• Stephanie Forrest 1997 « Building Diverse Computer
Systems »

• For security purposes

• mitigate code injection, buffer overflows

9

Instruction set randomization

10

Encryption Key

Compile
 Load
 In memory
 Execution

Decryption Key

Randomized instruction set emulation. EG Barrantes, DH Ackley, S Forrest, D Stefanović. ACM TISSEC, 8 (1), 3-40

Software diversity

• Address space layout randomization

• randomize binary addresses at load time

• a program’s address space is different on each
machine

• Deployed in all mainstream operating systems

• Effective against buffer overflows

11

New software monocultures

12

Software monoculture today

• Continues growing in upper levels of the software
stack

•  libraries, frameworks, IDEs, CMS, search engine, browser,

etc.

• Pushed by GOOD reasons

• software engineering practices: "

modularity and reuse

• compatibility and interoperability

• maintenance and evolution costs reduction

• economical motivations
 13

virtual machines
operating system

frameworks

HAL

libraries
applications

The case of Wordpress

• CMS monoculture

• March 2014: more than 20% of
500000 top site use Wordpress

• Plugins monoculture

• 64% use the Akismet plugin

• 23% use Jetpack, known to have an
SQL injection vulnerability

14
“Multi-tier diversification in Internet-based software applications”. Simon Allier, Olivier Barais, Benoit Baudry, Johann Bourcier,
Erwan Daubert, Franck Fleurey, Martin Monperrus, Hui Song, Maxime Tricoire. To appear in IEEE Software, Jan 2015

The case of Wordpress

15

110000 web sites

mean of 5 plugins per site

JS libraries

16

110000 web sites

Cryptographic protocols

17

Cryptographic protocols

18

source: https://t37.net/4-lessons-every-startup-should-learn-from-the-heartbleed-catastrophe.html

Cryptographic protocols

19

Social networks

20

source: http://www.zdnet.com/is-the-social-networking-monoculture-ready-to-crumble-7000003329/

Knowledge

21

Software development

22

source: http://www.creativebloq.com/netmag/bacon-bad-you-dangers-dev-monoculture-21410684

Alternatives are emerging

23

Web servers

24

Cloud platforms

25

Java virtual machines

26

Apps

27

Huge reservoir of functionally similar
software solutions

Yet, software systems remain highly
homogeneous

28

Take-away

• Software monocultures exist

• at a very large scale

•  in application level code

• Software diversity exists

• machine-code level

• Alternative software solutions emerge

• must be exploited

• Next challenge: diversify applications in a
proactive/automatic way

29

Our claim

MDE and SBSE

can spur

aplication software diversity

radiation

30

Web app example

31

Server side software stack

32

RingoJS
Rhino

MDMS

JVM

Re
di

s
DB

OS

Server side deployment

33

Nginx load balancer

http request

Internet

config 0

Monoculture deployment of MDMS

config 0 config 0

config 0config 0config 0

Server side deployment

34

Nginx load balancer

http request

Internet

config 1 config 2 config 3

config 4 config 5 config 6

Multi-diversified deployment of MDMS

diverse JS
interpreters

diverse
JVMs

diverse
OSs

diverse
clouds

Where models can support diversification

35

Nginx load balancer

http request

Internet

config 1 config 2 config 3

config 4 config 5 config 6

Multi-diversified deployment of MDMS

formal
dependencies

trade-off
between
diversity and
other criteria

Models provide abstractions
to formalize the space for
diversification and sustain
software diversity, system-

wise, over time

Searching for diverse architectures

• A reservoir of software diversity

• natural diversity of OS or JVM

• automatic diversification of the JS interpreter

• Automatic reasoning on the architecture

• find valid, diverse deployment architectures

• Actual deployment of a diverse architecture

• deploy the solution on a distributed setting

36

Synthesizing a diversity reservoir

• Sosies

• a sosie program is a variant of a program that passes
the same test suite

• Synthesized thousands of sosies

• deleting or adding / replacing statements by others from
the same program

• Synthesized 843 RingoJS sosies

•  that can be executed from the MDMS client

37
“Tailored Source Code Transformations to Synthesize Computationally Diverse Program Variants”.

Benoit Baudry Simon Allier, Martin Monperrus. ISSTA 2014

Architecture modeling

38

• Component-based software engineering

Node 1

Load Balancer

Node 2

MdMS

Node 3

MdMS

Node 4

MdMS

JVM = HotSpot
JVM = HotSpot
JVM = HotSpot

Node 1

Load Balancer

Node 2

MdMS

Node 3

MdMS

Node 4

MdMS

JVM = OpenJDK
JVM = JRockit
JVM = HotSpot

Architecture modeling

Architecture modeling

• Component

•  Code unit

•  I/O ports

• Channel

•  Communication between

components

• Node

•  Execution platform for components

• Group

•  Group nodes together to have a

consistent model

Kevoree for distributed deployment

• An open-source
framework

• A structural model that
represents the
distributed running
system and that can be
synchronized in both
directions on-demand

On-
demand
synchroni

zation

Kevoree for distributed deployment

42
4
2

Synthesizing software architecture

• Given a reservoir of diverse software
components

• natural diversity of VMs, JVMs, machines

• automatic diversity: sosie RingoJS

• What is the the good trade-off between

• capacity

• cost

• diversity: need to estimate ‘good’ diversity

43

Polymer Framework

• Polymer

• Open-source framework to enable runtime usage of SBSE

techniques

• Works to make SSBSE usable @Runtime

• Define dedicated domains, actions, fitness

• Find heuristics to converge faster to acceptable tradeoffs

Polymer

• Leverage the KMF framework to reason on domain
models

• Mutation, Fitness, and crossover are defined as
model transformation

• Multi-objectives

• Extensible framework

• Define your own model, your own operators, your own
fitnesses, define your own search algorithm

Implemented algorithms : Genetic (MOEAd,
NSGAII), Greedy (progression each steps), Local
Full Search

Node

Concrete domain example

Cloud

JVM : EString

O..*
 nodes

id : EString

Component

O..*
 components

name: EString
 Load Balancer
MdMS

sosie: EString

Domain model

id:EString
JVM: EString

Node

Cloud

name: EString
Component

sosie: EString
MDMS LoadBalancer

0..*components

0..* nodes

Polymer usage

GeneticEngine<Cloud> engine = new GeneticEngine<Cloud>();

engine.setAlgorithm(GeneticAlgorithm.EpsilonCrowdingNSGII);

engine.addOperator(new AddNodeMutator());

engine.addOperator(new RemoveNodeMutator());

engine.addOperator(new AddComponentMutator());

…

engine.addFitnessFuntion(new CloudCostFitness());

engine.addFitnessFuntion(new CloudCapacityFitness());

engine.addFitnessFuntion(new CloudDiversityFitness());

…

engine.setMaxGeneration(300);

engine.run();

The model to use

The Search

algorithm to use

The mutation operators

 to use

The fitnesses

 to use

Fix search parameters

Run

Defining Mutation

...

cloud.getNodes().add(new Nodes().setName("node_5555"));

...

Usage of model elements

Defining the cost Fitness

function evaluate(cloud : CloudModel) : Double {

...

return sum(cloud.getNodes.price);

...

}
 Usage of model elements

Defining the capacity Fitness

function evaluate(cloud : CloudModel) : Double {

...

return sum(cloud.getNodes.capacity);

...

}
 Usage of model elements

Defining the Diversity Fitness

function evaluate(cloud : CloudModel) : Double {

...

return extinctionSequence(cloud);

...

}

This function computes a value corresponding to the
extinction sequence of the cloud given in parameters

Usage of model elements

Diversity fitness: robustness

Percentage	
 of	
 plant	
 species	
 deleted:	

	
 exncon	
 sequence	

Memmo4	
 et	
 al.	
 2004	

Robustness: how fast extinctions lead to collapse
of other species (secondary extinctions)

Pe
rc
en

ta
ge
	
 o
f	
 r
em

ai
ni
ng
	
 sp

ec
ie
s	

Extinction sequence algorithm

1.  While the application still provides a service

1.  We select a specific component A

•  Such as a specific sosies of MdMS

2.  We kill all the instances of A

3.  We evaluate the capacity of the system to serve user
request and incrementally draw a curve

2.  We measure the area behind the curve to
determine the robustness of the system

Robustness Measurement

• Quantifies the resistance of the graph to
random perturbations

• Reports the change in apps alive as the
platforms are individually killed

• Robust networks allow the maximum amount
of apps to remain alive in the face of systemic
platform death

55

Conclusion

• Software monocultures grow at all levels in
software stacks

•  for good engineering and business reasons

• MDE and SBSE can be key enablers to balance
this natural phenomenon

• abstractions that characterize the diverse components

• search-based techniques that sustain diversity

56

References

•  « Multi-tier diversification in Internet-based software applications ». Simon

Allier, Olivier Barais, Benoit Baudry, Johann Bourcier, Erwan Daubert,
Franck Fleurey, Martin Monperrus, Hui Song, Maxime Tricoire. To appear in
IEEE Software, Jan 2015

•  « Tailored source code transformations to synthesize computationally
diverse program variants ». Benoit Baudry, Simon Allier, and Martin
Monperrus. ISSTA 2014.

•  « Optimizing Multi-Objective Evolutionary Algorithms to enable Quality-
Aware Software Provisioning ». Donia El Kateb, Francois Fouquet, Johann
Bourcier, Yves Le Traon. QSIC 2014

•  http://kevoree.org/polymer/

•  http://kevoree.org/

•  https://github.com/INRIA/spoon

•  http://diversify-project.eu/

57

